Machine learning Interview
37K subscribers
1.31K photos
96 videos
13 files
878 links
Разбираем вопросы с собеседований по Machine Learning, Data Science, Deep Learning и Нейронным сетям, Python.

Вопросы - @notxxx1


@itchannels_telegram -🔥лучшие it каналы

РКН: clck.ru/3FmwRz
Download Telegram
🧠 Yandex B2B Tech запустила AI Studio: создавай ИИ-агентов без навыков разработки

Платформа позволяет собирать AI-агентов на базе облачных моделей Яндекса или опенсорсных нейросетей.

📌 Что можно делать:
• Автоматизировать рутину: комплаенс-проверки, бухотчётность, поддержку клиентов
• Строить мультиагентные системы (например, один анализирует спрос, другой планирует закупки)
• Подключать голосовых агентов для кол-центров на базе realtime API;
• Встраивать умный поиск по интернету, а также по картинкам, таблицам и документам;
• Быстро подключать ИИ-агентов к внешним системам по шаблонам через MCP Hub (там уже доступны amoCRM и “Контур.Фокус”).

Такие ИИ-ассистенты уже доступны в самих сервисах Yandex Cloud – они могут сами составить запросы для баз данных, проверить алерты и развернуть ВМ в консоли. Для этого достаточно сформулировать запрос на простом языке.

#YandexCloud #AIStudio #NoCodeAI #бизнесавтоматизация
👍8🔥4🥱41🙏1
Tiny LLM — запускаем LLM-сервис за неделю

Это небольшой курс-гайд, где шаг за шагом показывается, как с нуля (на чистых матричных операциях) поднять модель Qwen2-7B, а затем оптимизировать её производительность.

Неделя 1: просто на Python, без “чёрной магии”

Неделя 2: оптимизации, C++ / Metal ядра

Неделя 3: батчинг и масштабирование сервиса

Подходит системным инженерам, которые хотят прозрачности — увидеть, из чего состоит работа LLM-сервера, без слоёв абстракций.
Работает с MLX (для Apple Silicon) и проверяется через сравнение с CPU-реализацией на PyTorch.

🔗 Подробнее: https://skyzh.github.io/tiny-llm/
👍12🔥64
📰 Реклама в ChatGPT — даже в платной версии?

По данным источников, OpenAI рассматривает идею запускать рекламу прямо в ChatGPT. Ходят слухи, что Марк Симo ведёт переговоры с потенциальными кандидатами (в том числе бывшими коллегами из Facebook), чтобы собрать команду, которая займётся монетизацией — включая и подписки, и новые рекламные форматы.

⚖️ Почему это может быть правдой:
- OpenAI тратит огромные суммы и остаётся убыточной.
- Стартапы часто работают в минус, но рано или поздно нужно выходить на прибыльность.
- Реклама — очевидный источник дохода.

⚖️ Почему это вызывает сомнения:
- Платные пользователи могут потерять доверие, если реклама появится даже там.
- Это ударит по бренду ChatGPT.
- Вероятно, куда больший доход принесёт B2B-направление, а не потребительский сегмент.

📊 На сегодня около 3% пользователей платят за ChatGPT, а 97% используют бесплатный тариф. Поддерживать такую модель дорого, и OpenAI ищет варианты. Но станет ли реклама решением — пока не ясно.

#OpenAI #ChatGPT #Ads #AIbusiness
🔥84👍3
Wink AI Challenge — хакатон на стыке IT и кино. Участников ждут задачи, которые ускорят производство фильмов и сериалов за счёт прикладных AI-решений. Призовой фонд соревнования — 1 125 000 рублей.

Регистрация до 31 октября: https://cnrlink.com/winkaichallengemlinterview

Приглашаем на первый в России хакатон, посвящённый применению ИИ в кинопроизводстве, ML-инженеров, backend- и frontend-разработчиков, специалистов в DevOps, MLOps, а также инженеров в сфере мультимедиа.

Вы сможете:
🔸 Разработать ML-модель, которую оценят и будут использовать продюсеры популярных российских фильмов и сериалов.  
🔸 Решить кейсы, основанные на реальных задачах, с которыми продюсеры сталкиваются каждый день.
🔸 Использовать настоящие сценарии и видеоматериалы для анализа текстов, извлечения сущностей и генерации структуры съёмок.
🔸 Попрактиковаться в применении NLP, NER и мультимодальных данных в задачах кинопроизводства.

Регистрируйтесь на платформе Codenrock и создайте ИИ-ассистента для кинопроизводства: https://cnrlink.com/winkaichallengemlinterview
👍4🔥21
🧠 Hallucination Risk Toolkit for LLMs

Этот инструмент позволяет оценивать риск галлюцинаций в больших языковых моделях без повторного обучения. Он преобразует запросы, используя закон декомпрессии, чтобы определить, стоит ли отвечать или отказываться, основываясь на целевом уровне обслуживания.

🚀Основные моменты:
- Оценка риска галлюцинаций с помощью математической модели.
- Поддержка двух режимов: с контекстом и без.
- Использует только API Chat Completions от OpenAI.
- Прозрачные математические расчеты для принятия решений.

📌 GitHub: https://github.com/leochlon/hallbayes

#python
9👍7🥰2
🧠 Thinking Machines предложила новый способ обучения нейросетей — manifold Muon, который делает веса более стабильными и предсказуемыми.

🔑 Суть метода:

- Веса ограничиваются на специальной математической поверхности (многообразии Стифеля), где они не могут «разъехаться».

- Размер обновлений контролируется через спектральную норму, чтобы шаги обучения не искажали сеть слишком сильно.

- Обновления считаются в касательном пространстве и возвращаются обратно на многообразие.

📊 На тестах CIFAR-10 метод оказался точнее AdamW и удерживал веса в стабильном диапазоне, хотя шаги обучения занимали больше времени.

🎯 Главная идея — ИИ может давать последовательные и надёжные ответы. То, что сейчас считается «рандомностью» моделей, авторы называют исправимым багом.

Это может стать основой для создания безопасных AGI-систем, где нельзя допускать хаотичное поведение модели.

https://thinkingmachines.ai/blog/modular-manifolds/
25🔥9👍7💅1
Почему GPT-5 обучался меньше, чем GPT-4.5

Меньше pre-training, больше post-training.

Обычно модели тратили в ~100 раз больше вычислений на предобучение, чем на дообучение.

В GPT-5 ситуация изменилась: масштабирование post-training оказалось выгоднее по качеству на доллар.

- Ключевые факты:
- GPT-5 учился на меньшей базе, но с сильным упором на дообучение.
- Методы reasoning-ориентированного post-training позволяют сократить предобучение примерно в 10 раз при сохранении качества.
- В 2024 году бюджет R&D-вычислений OpenAI был ~$5B, в 2025 вырос до ~$9B.

- Почему не масштабировали как GPT-4.5?
Для безопасного увеличения post-training нужны огромные датасеты задач, среда для RL и длинные циклы экспериментов. Из-за конкуренции OpenAI решила выпустить GPT-5 быстрее, «выжав» максимум из post-training на меньшей модели.

👉 Вероятно, GPT-6 вернётся к большему pre-training + post-training, чтобы раскрыть потенциал масштабирования.

🔬 Новый отчёт от Epoch AI: https://epoch.ai/gradient-updates/why-gpt5-used-less-training-compute-than-gpt45-but-gpt6-probably-wont
👍177🔥5🤣3
Forwarded from Machinelearning
🚀 DeepSeek-V3.2-Exp - вышла новая экспериментальная версия

Главное:
- Основана на V3.1-Terminus
- Новый механизм Sparse Attention (DSA) → быстрее и дешевле работа с длинными контекстами
- Качество почти без потерь, производительность как у V3.1
- 💰 API подешевел более чем на 50%

📊 V3.1 пока ещё будет доступна до 15 октября 2025.

🔗 Hugging Face: https://huggingface.co/deepseek-ai/DeepSeek-V3.2-Exp)
🔗 Tech Report: https://github.com/deepseek-ai/DeepSeek-V3.2-Exp/blob/main/DeepSeek_V3_2.pdf)
🔗Github: https://github.com/deepseek-ai/DeepSeek-V3.2-Exp/blob/main/DeepSeek_V3_2.pdf

@ai_machinelearning_big_data


#DeepSeek #AI #V32 #SparseAttention #LLM
2👍2🤔2
Media is too big
VIEW IN TELEGRAM
⚡️ Сэм Альтман о том, почему энергию на ИИ тратить необходимо

💡 Даже если ИИ будет потреблять сотни мегаватт или гигаватты, это оправдано, если он поможет открыть дешёвый и эффективный ядерный синтез и заменить тысячи ГВт углеродной генерации по всему миру.

🌍 «Мы обречены, если не найдём новые научные решения климатического кризиса. Без ИИ мы делаем это слишком медленно. Давайте попробуем с ним».

🔋 Альтман подчёркивает, что современные модели уже очень эффективны по метрике *watts per token* — и в сравнении с энергозатратами человека на размышления выглядят даже выгоднее.

📜 Он сравнил это с Google: в начале компанию критиковали за энергопотребление, но один поисковый запрос тратил куда меньше ресурсов, чем поездка в библиотеку.

👉 Если ИИ поможет найти дешёвый синтез, польза для климата многократно превысит его энергозатраты.
🤣2819👍11🌭32🔥2
Ищете мощный сервер без переплаты?

Выгодное решение для обработки и анализа больших данных — выделенный сервер конфигурации AR45-NVMe от Selectel. Он подойдет для эффективной работы с многопоточностью и Python, R, Spark в рамках одной машины, а также машинного обучения на CPU.

Преимущества сервера:
- 16 высокочастотных ядер,
- Безлимитный интернет-трафик и приватная сеть — 1 Гбит/с,
- DDoS-защита, публичный IPv4, SLA — 99,8%,
- Автоустановка ОС и загрузка своих ISO-образов,
- Техподдержка 24/7 и замена комплектующих за 3 часа.


Закажите сервер конфигурации AR45-NVMe на сайте в несколько кликов: https://slc.tl/rurq6?erid=2W5zFK7J7NY
🗿3😱1
Менять автоэнкодер в latent diffusion моделях проще, чем кажется.

🚀 DC-Gen — это новый фреймворк для ускорения диффузионных моделей после обучения.
Он переводит любую готовую модель в глубоко сжатое латентное пространство, снижая затраты и многократно ускоряя генерацию.

🔑 Основное
- Высокое разрешение без потерь качества
Версия DC-Gen-FLUX.1-Krea-12B выдаёт то же качество, что и оригинал, но работает в 53 раза быстрее на H100 при 4K.
С NVFP4 картинка 4K генерируется всего за 3.5 секунды на одной NVIDIA 5090 (20 шагов).
- 💸 Низкая стоимость адаптации
Перевод FLUX.1-Krea-12B в глубоко-сжатый автоэнкодер требует всего 40 GPU-дней на H100.

📄 Статья: https://arxiv.org/abs/2509.25180
💻 Код: https://github.com/dc-ai-projects/DC-Gen
🎨 Модели : https://huggingface.co/collections/dc-ai/dc-gen-6899bb095082244f396203e1

#diffusion #deeplearning #AI
🔥83😁2🥰1🤝1
😂 Сэм Альтман:

🗣️ Две недели назад:
“Нам нужно $7 трлн и 10 ГВт энергии, чтобы победить рак.”

🗣️ Сегодня:
“Мы запускаем соц сеть для персонализированного нейрослопа

#AI #OpenAI #Altman
😁47🤣7🏆1💊1
🚀 В ByteDance Seed представили новую технику для обучения LLM - Knapsack RL

Проблема: в классическом RL-тренинге распределение rollout-ов идёт равномерно.

Простые задачи всегда решаются → нет градиента

Сложные задачи всегда проваливаются → тоже нет градиента

💡 Решение: рассматривать exploration как задачу рюкзака (knapsack) и распределять вычислительный бюджет туда, где это реально даёт сигнал обучения.

Результаты:

🔼 +20–40% больше ненулевых градиентов

🧮 До 93 rollout-ов на сложные задачи (без доп. вычислений)

📈 +2–4 средних балла, до +9 на пике в математических бенчмарках

💰 ~в 2 раза дешевле, чем равномерное распределение

📄 Подробности: huggingface.co/papers/2509.25849
👍72