Machine learning Interview
24.4K subscribers
1.05K photos
70 videos
12 files
704 links
Разбираем вопросы с собеседований по Machine Learning, Data Science, Deep Learning и Нейронным сетям, Python.

Вопросы - @notxxx1


@itchannels_telegram -🔥лучшие it каналы

РКН: clck.ru/3FmwRz
Download Telegram
Forwarded from Machinelearning
⚡️ QwQ-32B-Preview: экспериментальная ризонинг-модель от Qwen.

QwQ (Qwen with Questions) – экспериментальная исследовательская модель, разработанная Qwen Team с фокусом на развитие способности рассуждения.

QwQ отличается любознательностью, подходя к каждой проблеме – будь то математика, программирование или знания о мире – с подлинным удивлением и сомнением. Прежде чем остановиться на каком-либо ответе, модель подвергает сомнению свои собственные предположения, исследуя разные пути рассуждений в поисках более глубокой истины.

QwQ-32B-Preview, предварительная версия модели, которая демонстрирует аналитические способности в математике и программировании, показывая топовые результаты в тестах:

🟢65.2% на GPQA (тест на решение научных задач на уровне выпускника);
🟢50.0% на AIME (оценка математических способностей);
🟢90.6% на MATH-500 (тест на понимание математики по различным темам);
🟢50.0% на LiveCodeBench (тест на навыки программирования в реальных сценариях).

Архитектура QwQ основана на transformers с использованием RoPE, SwiGLU, RMSNorm и Attention QKV bias. Модель имеет 32.5 млрд. параметров, 64 слоя и 40 attention heads для Q и 8 для KV. Контекст модели - 32 768 токенов.

⚠️ Как у любого эксперимента, у QwQ есть ограничения:

🟠Модель может смешивать языки или переключаться между ними неожиданно, влияя на четкость ответов.

🟠QwQ склонна входить в циклические шаблоны рассуждений, что приводит к длинным ответам без окончательного результата.

⚠️ Сообществом LM Studio опубликованы квантованные версии в формате GGUF в разрядности от 3-bit (17.2 Gb) до 8-bit (34.8 GB), совместимые для запуска в llama.cpp (release b4191) и LM Studio.


▶️Пример инференса на HF Transformers:

from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "Qwen/QwQ-32B-Preview"
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype="auto",
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r in strawberry."
messages = [
{"role": "system", "content": "You are a helpful and harmless assistant. You are Qwen developed by Alibaba. You should think step-by-step."},
{"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
generated_ids = model.generate(
**model_inputs,
max_new_tokens=512
)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]


📌Лицензирование: Apache 2.0 License.


🟡Страница проекта
🟡Модель
🟡Набор GGUF версий
🟡Demo
🟡Сообщество в Discord


@ai_machinelearning_big_data

#AI #ML #LLM #QwQ #Qwen
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
📌Методология оценки LLM

На Хабре вышла статья о современных подходах к оценке языковых моделей. Традиционно используются академические методы оценки (школьные тесты, профэкзамены) и специальные бенчмарки вроде COPA, PIQA для проверки базового понимания контекста, но они не отражают реальной ценности моделей в бизнес-задачах — способности к диалогу, переводу или генерации идей.

Для решения этой проблемы, например, в Яндексе разрабатывают внутренние бенчмарки под каждую практическую задачу YandexGPT, учитывая, что стандартные тесты подвержены протечкам данных и быстро устаревают. Для комплексной оценки привлекаются AI-тренеры — специалисты со строгим отбором по навыкам фактчекинга.

Ключевой вывод: нет универсального метода оценки, необходимы постоянный анализ данных и ручная разметка.

📌 Оригинал

@machinelearning_interview
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from Machinelearning
🌟 INTELLECT-1: релиз первой модели децентрализованного обучения.

PRIME Intellect опубликовала INTELLECT-1 (Instruct + Base), первую языковую модель с 10 млрд. параметров, совместно обученную за 50 суток 30 участниками эксперимента по всему миру.

PRIME Intellect использовала собственную платформу PRIME, разработанную для решения главных проблем децентрализованного обучения: ненадежность сети и динамическое управление вычислительными узлами.

Платформа использовала сеть из 112 GPU H100 на 3 континентах и ​​достигла коэффициента использования вычислений в 96% при оптимальных условиях.

Корпус обучения составлял на 1 трлн. токенов публичных датасетов с процентным соотношением: 55% fineweb-edu, 10% fineweb, 20% Stack V1, 10% dclm-baseline, 5% open-web-math.

▶️Технические характеристики:

🟢Parameters: 10B;
🟢Layers: 42;
🟢Attention Heads: 32;
🟢Hidden Size: 4096;
🟢Context Length: 8192;
🟢Vocabulary Size: 128256.

INTELLECT-1 достигла точности 37,5% на тесте MMLU и 72,26% на HellaSwag и превзошла несколько других моделей с открытым исходным кодом в WinoGrande с результатом 65,82%.

Хотя эти показатели немного отстают от современных популярных моделей, результаты эксперимента - важнейший шаг к демократизации разработки ИИ и предотвращению консолидации возможностей ИИ в рамках нескольких организаций.

▶️Квантованные в GGUF версии INTELLECT-1_Instruct в разрядностях от 3-bit (5.46 GB) до 8-bit(10.9 GB) от сообщества LM Studio.

▶️Пример инференса на Transformers:

import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

torch.set_default_device("cuda")
model = AutoModelForCausalLM.from_pretrained("PrimeIntellect/INTELLECT-1")
tokenizer = AutoTokenizer.from_pretrained("PrimeIntellect/INTELLECT-1")

input_text = "%prompt%"
input_ids = tokenizer.encode(input_text, return_tensors="pt")
output_ids = model.generate(input_ids, max_length=50, num_return_sequences=1)
output_text = tokenizer.decode(output_ids[0], skip_special_tokens=True)

print(output_text)


📌Лицензирование: Apache 2.0 License.


🟡Статья
🟡Набор моделей HF
🟡Набор GGUF версий
🟡Техотчет
🟡Demo
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #LLM #Decentralizated
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🔍 Подготовка к собеседованию по Deep Learning!

🌟 Этот комплексный курс содержит 50 наиболее распространенных вопросов с подробными объяснениями для каждого!

🔗 Ссылка: *клик*

#deeplearning #machinelearning

@machinelearning_interview
Please open Telegram to view this post
VIEW IN TELEGRAM
🎓 A smol course

Hugging Face запустили бесплатный открытый курс по файнтюнингу моделей. В курсе рассматриваются теория и практические аспекты работы с такими методами, как LoRA, супервайзед-файнтюнинг, DPO, ORPO и другие техники для настройки моделей под конкретные задачи.

Примеры в курсе основаны на использовании модели SmolLM2, а сам материал ориентирован на работу с локальными моделями, однако полученные знания могут быть легко применены к другим моделям.

Это полезный и интересный ресурс, особенно для тех, кто занимается файнтюнингом на практике или изучает эту тему

⚡️ Github

@machinelearning_interview
Forwarded from Machinelearning
🌟 Динамическое 4-битное квантование VLM с повышенной точностью от Unsolth .

Unsloth представил практический метод динамического 4-битного квантования VLM, который решает проблему снижения точности популярных алгоритмов квантования AWQ, Bitsandbytes, GPTQ и HQQ.

В эксперименте использовался Bitsandbytes в качестве основы для всех линейных слоев, но квантование определенных параметров было динамически отключено. Этот подход позволил добиться значительного повышения точности при использовании всего на 10% больше VRAM по сравнению с стандартным 4-битным квантованием Bitsandbytes.

В результате, этот метод позволяет сохранить точность модели, близкую к 16-битной точности, при значительном сокращении размера модели.

Тестирование на VL-моделях Llama 3.2 Vision, Qwen2 Vision и Pixtral, показали значительные преимущества по сравнению со стандартным 4-битным квантованием. Например, квантование Qwen2 Vision 2B до 4 бит приводило к полной поломке модели, в то время как метод динамического квантования позволял восстановить точность при увеличении использования памяти всего на 450 МБ.

Аналогичным образом, получилось восстановить точность Llama 3.2 Vision 11B и Pixtral 12B, которые также деградировали на стандартном 4-битном квантовании.

▶️В открытый доступ на HF опубликованы модели, участвующие в исследовании:

🟢Llama-3.2-11B-Vision-Instruct-unsloth-bnb-4bit (7.23 GB)

🟢Llama-3.2-11B-Vision-unsloth-bnb-4bit (7.23 GB)

🟠Qwen2-VL-2B-Instruct-unsloth-bnb-4bit (1.81 GB)

🟠Qwen2-VL-7B-Instruct-unsloth-bnb-4bit (6.3 GB)

🟠QwQ-32B-Preview-unsloth-bnb-4bit

🟢Pixtral-12B-2409-unsloth-bnb-4bit (8.42GB)


⚠️ К каждой модели в Model Card можно найти блокнот для запуска в Google Collab и созданные сообществом GGUF-версии.


📌Лицензирование моделей:

🟠Семейство Llama: Llama 3.2 Community License Agreement
🟢Семейство Qwen: Apache 2.0 License.
🟢Pixtral: Apache 2.0 License.


🟡Статья
🟡Набор моделей
🟡Сообщество в Discord


@ai_machinelearning_big_data

#AI #ML #VLM #Unsolth #Quantization
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥 Microsoft выпустила Trellis!

Trellis - это новая 3D-модель, которая создает высококачественные 3D-объекты в таких форматах, как Radiance Fields,, 3D-гауссианы и Мэши.

Github: github.com/Microsoft/TRELLIS
Demo: https://huggingface.co/spaces/JeffreyXiang/TRELLIS

@machinelearning_interview
⚡️ Google запустил бесплатный пятидневный курс по нейросетям (генеративному ИИ).

Курс включает подкасты, текстовые материалы и практические задания, которые помогут разобраться в следующих темах:

— Основах LLM: от трансформеров до методов тонкой настройки;
— Внедрении и использовании векторных хранилищ/баз данных;
— Создании и работе с ИИ-агентами;
— Специализации LLM для конкретных областей знаний, таких как медицина;
— MLOps для генеративного ИИ.

🔗 Курс

@machinelearning_interview
Please open Telegram to view this post
VIEW IN TELEGRAM
📚Decisions&Dragons: полезный гайд по обучению с подкреплением

В нем вы найдете вопросы и ответы по ключевым темам обучения с подкреплением.

Внутри вы найдете:
▪️Что такое горизонт в обучении с подкреплением?
▪️Почему Q-learning не работает с непрерывными действиями?
▪️В чём разница между model-based и model-free обучением с подкреплением?

📌 Полный гайд
🌟 AQLM․rs: сокращаем расходы на нейросети

Исследователь Яндекса разработал сервис для запуска языковых моделей с 8 млрд параметров на пользовательских девайсах.

Автор написал инференс модели Llama 3.1 8B, работающий в браузере на WebAssembly без использования GPU. Для этого он применил технологию сжатия нейросетей AQLM, которую разработала команда Yandex Research вместе с университетами ISTA и KAUST.

Для примера, скорость ответов нейросети на MacBook Pro M1 составила 1,5 токена в секунду или 3–4 символа.

🟡Статья
🖥Github

@ai_machinelearning_big_data

#AI #ML #LLM
Please open Telegram to view this post
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
🔥 ds-cheatsheet — репозиторий на Github с огромным количеством всевозможных шпаргалок по Data Science!

🔐 Лицензия: MIT

🖥 Github

@machinelearning_interview
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from Machinelearning
✔️ Проект vLLM присоединился к экосистеме PyTorch.

vLLM, движок для запуска LLM, стал частью экосистемы PyTorch. vLLM обеспечивает высокую пропускную способность и эффективное использование памяти при работе с моделями, содержащими сотни миллиардов параметров. vLLM поддерживает аппаратные платформы NVIDIA, AMD, Google Cloud TPU, Intel и AWS. Установить vLLM теперь можно простой командой: pip install vllm.
pytorch.org

✔️ OpenAI запускает Canvas для совместной работы с ChatGPT.

Canvas предоставляет возможность совместного редактирования текстов и кода в режиме реального времени. Новая функция позволяет пользователям добавлять текст, вносить изменения и давать обратную связь ChatGPT. Интеграция с Python позволяет запускать код непосредственно в Canvas и визуализировать результаты, включая графику. OpenAI также объявила о поддержке Canvas в пользовательских GPT, что позволит расширить их функциональность и адаптировать к конкретным задачам.
openai.com

✔️ MIT разработал инструмент для отслеживания источников информации, используемых ИИ.

Исследователи из МIT создали ContextCite – инструмент, который отслеживает источники информации, применяемые ИИ при создании текста. ContextCite позволяет пользователям проверять достоверность информации, предоставляемой ИИ, выделяя фрагменты текста, на которых основан ответ.

В случае ошибки ContextCite помогает определить источник недостоверных данных и понять логику работы ИИ. Инструмент также способен выявлять «атаки отравления», когда злоумышленники пытаются исказить информацию, вводя ложные данные в источники, используемые ИИ.
news.mit.edu

✔️ DIMON: Нейросетевой оператор для решения дифференциальных уравнений в частных производных на различных геометрических областях.

Ученые из Университета Джонса Хопкинса разработали новый метод машинного обучения DIMON (Diffeomorphic Mapping Operator Learning), который способен эффективно обучаться и решать дифференциальные уравнения в частных производных (PDE) значительно быстрее, чем суперкомпьютеры.

DIMON основан на использовании диффеоморфизмов для преобразования функций, заданных на различных областях, в единую эталонную область. Это позволяет обучить нейросетевой оператор, способный аппроксимировать решение PDE на любой области из семейства диффеоморфных областей. DIMON успешно протестирован на решении уравнения Лапласа и моделировании динамики реакции-диффузии. Он был использован для прогнозирования распространения электрического сигнала в левом желудочке сердца на основе данных 1006 пациентов. DIMON продемонстрировал высокую точность, сократив время прогнозирования с нескольких часов до менее чем одной секунды.
nature.com

✔️ Reddit запускает инструмент поиска с ИИ.

Инструмент автоматически генерирует ответы на запросы пользователей и предоставляет ссылки на релевантные источники информации. Ключевой особенностью Reddit Answers является использование данных, собранных непосредственно с платформы Reddit, что позволяет находить нужную информацию без обращения к внешним поисковым системам.

В настоящее время доступ к Reddit Answers ограничен: им могут воспользоваться только пользователи из США через веб-интерфейс или приложение iOS и только на английском языке. В планах - расширить доступность сервиса для других языков и регионов. На данный момент Reddit Answers находится на стадии тестирования.
redditinc.com

✔️ Swift Ventures создает новый индекс для оценки инвестиций в ИИ.

Индекс использует систему оценки, основанную на анализе инвестиций в исследования ИИ, количество специалистов по ИИ в штате и доходы от операций, связанных с ИИ. Этот подход позволяет определить, какие компании действительно инвестируют в ИИ, а не просто используют модный термин.

Анализ отслеживаемых 90 компаний показал, что только небольшая часть компаний, упомянувших ИИ в своих отчетах, вкладывает значительные средства в развитие этой технологии.
venturebeat.com

@ai_machinelearning_big_data

#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
🌟 Новые российские открытые модели: T-Lite с 7 млрд. параметров и T-Pro — с 32.

Доступ к T-Pro и обновленной T-Lite от “Т-Технологий (в составе Т-Банк) открыт для всех на платформе Hugging Face. Многочисленные индустриальные бенчмарки, в том числе ruMMLU, Ru Arena Hard, MT Bench и AlpacaEval, подтверждают статус лучших в мире открытых LLM на русском языке. По общему уровню знаний, умению вести диалог и справляться с практическими задачами T-Lite и T-Pro превосходят остальные российские и зарубежные модели. Также T-Pro и T-Lite обгоняют проприетарные модели OpenAI, Google и Anthropic.

Увеличенное число параметров у T-Pro до 32 млр. параметров делает модель более мощной и производительной, а также позволяет ей учитывать больше контекста и особенностей языка, лучше запоминать информацию, делать более точные и сложные выводы

▶️Модели входят в семейство специализированных языковых моделей “Т-Технологий” – Gen-T, которые справляются с решением конкретных задач, что не может предложить, например, ChatGPT.

▶️При разработке моделей используются технологии продолженного предобучения (Continual Pretraining). Таким образом, уже обученную на больших объемах информации модель можно достаточно дообучить под конкретные задачи.

@machinelearning_interview

#AI #ML #LLM
Forwarded from Machinelearning
🌟 MD4: Маскированная диффузия для дискретных данных.

Маскированная (или абсорбирующая) диффузия - перспективный подход в генеративном моделировании дискретных данных, предлагающий альтернативу авторегрессионным моделям.

MD4 (Masked Discrete Diffusion for Discrete Data) - метод, разработанный в Google DeepMind предлагает упрощенный и обобщенный подход к маскированной диффузии. Структура метода позволяет обучать обобщенные модели маскированной диффузии с гибкими схемами маскировки, зависящими от состояния данных.

В основе MD4 лежит «маскирующий» процесс, превращающий исходные данные в состояние «маски» в случайный момент времени. Обращение этого процесса позволяет синтезировать новые данные, сохраняющие распределение обучающей выборки.

Математически прямой процесс описывается как марковская последовательность дискретных случайных величин, индексируемых временным параметром от 0 до 1.

MD4 продемонстрировал превосходство над диффузионными языковыми моделями по показателю перплексии на наборе данных OpenWebText и значительно обошел существующие дискретные диффузионные модели по качеству пиксельного моделирования изображений, достигая 2,75 бит на измерение для CIFAR-10 и 3,40 бит на измерение для ImageNet 64 × 64.

Эти результаты выше, чем показатели авторегрессионных моделей сопоставимого размера (GPT-2, PixelRNN, Gated PixelCNN, PixelCNN++, PixelSNAIL, Image Transformer, Sparse Transformer).

Несмотря на все преимущества метода, MD4 склонен к переобучению, что снижает его эффективность для задач с нулевой выборкой по сравнению с более простыми моделями.

Прикладная реализация MD4 опубликована в репозитории Google Deepmind, в котором представлена возможность повторить экспериментальное обучение на тексте или изображениях.

⚠️ Batch size зависит от вычислительных ресурсов. Для обучения модели MD4-S с длиной последовательности 1024, 8 GPU A100 могут поддерживать максимальный batch size=128. При запуске на TPU, 8 чипов v5litepod, batch size=32.

▶️Локальная установка и пример обучения на тексте и изображениях:

# Create & activate env
python -m venv md4_venv
source md4_venv/bin/activate

# Install required packages
pip install -r requirements_gpu.txt

# Include a path dir in the Python path
export PYTHONPATH="$PYTHONPATH:~/path/to/md4"

# Prepare openwebtext for training
mkdir data_dir
python prepare_openwebtext_data.py

# Train a MD4-S model over text data
python md4/main.py --config=md4/configs/md4/openwebtext.py --sharded=false --workdir=./expt

# Train a MD4-S model over image data via cifar10
python md4/main.py --config=md4/configs/md4/cifar10.py --sharded=false --workdir=./expt


📌Лицензирование: Apache 2.0 License.


🟡Arxiv
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #Diffusion #MD4 #GoogleDeepMind
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM