Data Analysis Books | Python | SQL | Excel | Artificial Intelligence | Power BI | Tableau | AI Resources
48.5K subscribers
236 photos
1 video
36 files
396 links
Download Telegram
Want to build your first AI agent?

Join a live hands-on session by GeeksforGeeks & Salesforce for working professionals

- Build with Agent Builder

- Assign real actions

- Get a free certificate of participation

Registeration link:๐Ÿ‘‡
https://gfgcdn.com/tu/V4t/
Checklist to become a Data Analyst
๐Ÿ‘2โค1๐Ÿ”ฅ1
Data Analysis vs Data Science

Data analysis often focuses on interpreting and summarizing existing data, requiring skills like statistical analysis, SQL, and data visualization.
On the other hand, data science involves a broader set of skills, including machine learning, predictive modeling, and advanced programming.

In essence, data analysis is a subset of data science, with data scientists often having a more extensive toolkit for handling complex and unstructured data.

Free Resources to become data analyst -> https://www.linkedin.com/posts/sql-analysts_freecertificates-dataanalysts-python-activity-7113004712412524545-Uw4k

Steps to become data scientist -> https://t.iss.one/learndataanalysis/559
๐Ÿ‘1
TOP CONCEPTS FOR INTERVIEW PREPARATION!!

๐Ÿš€TOP 10 SQL Concepts for Job Interview

1. Aggregate Functions (SUM/AVG)
2. Group By and Order By
3. JOINs (Inner/Left/Right)
4. Union and Union All
5. Date and Time processing
6. String processing
7. Window Functions (Partition by)
8. Subquery
9. View and Index
10. Common Table Expression (CTE)


๐Ÿš€TOP 10 Statistics Concepts for Job Interview

1. Sampling
2. Experiments (A/B tests)
3. Descriptive Statistics
4. p-value
5. Probability Distributions
6. t-test
7. ANOVA
8. Correlation
9. Linear Regression
10. Logistics Regression


๐Ÿš€TOP 10 Python Concepts for Job Interview

1. Reading data from file/table
2. Writing data to file/table
3. Data Types
4. Function
5. Data Preprocessing (numpy/pandas)
6. Data Visualisation (Matplotlib/seaborn/bokeh)
7. Machine Learning (sklearn)
8. Deep Learning (Tensorflow/Keras/PyTorch)
9. Distributed Processing (PySpark)
10. Functional and Object Oriented Programming

Like โค๏ธ the post if it was helpful to you!!!
โค5
Steps to become data analyst when you are fresher ๐Ÿ‘‡๐Ÿ‘‡

1 - First try to focus 3 mandatory skills i.e. Sql, Ms excel and python -

- For sql you can refer Ankit Bansal Or Thoufiq Mohammed (techtfq) on @sqlanalyst
- For Ms excel refer Leila Gharani or @excel_analyst
- For python refer freecodecamp from YouTube or @pythonanalyst

2 - After that try to be clear with basic idea of tableau or powerbi. (Not mandatory for every job). You can refer this channel for free resources https://t.iss.one/PowerBI_analyst

3 - Add your college project in your resume, if it's a data science related project it will help a lot. If you don't have project then you can make some dashboarding projects from YouTube in tableau/powerbi.

4 - And start applying for jobs which is having 0-1 yr experience required, you can also apply for 1 yr experience required job in analytics because sometimes they may consider fresher also. You can refer this channel @jobs_sql for job opportunities
๐Ÿ‘4โค1
Data types are foundational in computing, and it's essential to understand them to work effectively in any programming environment.

Let's take a dive into the top ten commonly used data types:

1. Integer (int):
- Represents whole numbers.
- Examples: -2, -1, 0, 1, 2, 3

2. Floating Point (float/double):
- Represents numbers with decimals.
- Examples: -2.5, 0.0, 3.14

3. Character (char):
- Represents single characters.
- Examples: 'A', 'b', '1', '%'

4. String:
- Represents sequences of characters, basically text.
- Examples: "Hello", "ChatGPT", "1234"

5. Boolean (bool):
- Represents true or false values.
- Examples: True, False

6. Array:
- Represents a collection of elements, often of the same type.
- Examples: [1, 2, 3], ["apple", "banana", "cherry"]

7. Object:
- Used in object-oriented programming, represents a combination of data and methods to manipulate the data.
- Examples: A Car object might have data like color and speed and methods like drive() and park().

8. Date & Time:
- Represents date and time values.
- Examples: 23-10-2023, 12:30:45

9. Byte & Binary:
- Represents raw binary data.
- Examples: 01010101 (Byte), 101000111011 (Binary)

10. Enum:
- Represents a set of named constants.
- Examples: Days of the week (Monday, Tuesday...), Colors (Red, Blue, Green)
๐Ÿ‘4
Choosing the Right Chart Type

Selecting the appropriate chart can make or break your data storytelling. Here's a quick guide to help you choose the perfect visualization:

โ†ณ ๐๐š๐ซ ๐‚๐ก๐š๐ซ๐ญ๐ฌ: Perfect for comparing quantities across categories (Think: regional sales comparison)

โ†ณ ๐‹๐ข๐ง๐ž ๐‚๐ก๐š๐ซ๐ญ๐ฌ: Ideal for showing trends and changes over time (Example: monthly website traffic)

โ†ณ ๐๐ข๐ž ๐‚๐ก๐š๐ซ๐ญ๐ฌ: Best for showing parts of a whole as percentages (Use case: market share breakdown)

โ†ณ ๐‡๐ข๐ฌ๐ญ๐จ๐ ๐ซ๐š๐ฆ๐ฌ: Great for showing the distribution of continuous data (Like salary ranges across your organization)

โ†ณ ๐’๐œ๐š๐ญ๐ญ๐ž๐ซ ๐๐ฅ๐จ๐ญ๐ฌ: Essential for exploring relationships between variables (Perfect for marketing spend vs. sales analysis)

โ†ณ ๐‡๐ž๐š๐ญ ๐Œ๐š๐ฉ๐ฌ: Excellent for showing data density with color variation (Think: website traffic patterns by hour/day)

โ†ณ ๐๐จ๐ฑ ๐๐ฅ๐จ๐ญ๐ฌ: Invaluable for displaying data variability and outliers (Great for analyzing performance metrics)

โ†ณ ๐€๐ซ๐ž๐š ๐‚๐ก๐š๐ซ๐ญ๐ฌ: Shows cumulative totals over time (Example: sales growth across product lines)

โ†ณ ๐๐ฎ๐›๐›๐ฅ๐ž ๐‚๐ก๐š๐ซ๐ญ๐ฌ: Powerful for displaying three dimensions of data (Combines size, position, and grouping)

๐๐ซ๐จ ๐“๐ข๐ฉ: Always consider your audience and the story you want to tell when choosing your visualization type.

I have curated the best interview resources to crack Power BI Interviews ๐Ÿ‘‡๐Ÿ‘‡
https://t.iss.one/PowerBI_analyst

Hope you'll like it

Like this post if you need more resources like this ๐Ÿ‘โค๏ธ
๐Ÿ‘4
Want to practice for your next interview?

Then use this prompt and ask Chat GPT to act as an interviewer ๐Ÿ˜„๐Ÿ‘‡ (Tap to copy)

I want you to act as an interviewer. I will be the
candidate and you will ask me the
interview questions for the position position. I
want you to only reply as the interviewer.
Do not write all the conservation at once. I
want you to only do the interview with me.
Ask me the questions and wait for my answers.
Do not write explanations. Ask me the
questions one by one like an interviewer does
and wait for my answers. My first
sentence is "Hi"


Now see how it goes. All the best for your preparation
Like this post if you need more content like this๐Ÿ‘โค๏ธ
โค5
๐ŸŒฎ Data Analyst Vs Data Engineer Vs Data Scientist ๐ŸŒฎ


Skills required to become data analyst
๐Ÿ‘‰ Advanced Excel, Oracle/SQL
๐Ÿ‘‰ Python/R

Skills required to become data engineer
๐Ÿ‘‰ Python/ Java.
๐Ÿ‘‰ SQL, NoSQL technologies like Cassandra or MongoDB
๐Ÿ‘‰ Big data technologies like Hadoop, Hive/ Pig/ Spark

Skills required to become data Scientist
๐Ÿ‘‰ In-depth knowledge of tools like R/ Python/ SAS.
๐Ÿ‘‰ Well versed in various machine learning algorithms like scikit-learn, karas and tensorflow
๐Ÿ‘‰ SQL and NoSQL

Bonus skill required: Data Visualization (PowerBI/ Tableau) & Statistics
โค4๐Ÿ‘2๐Ÿ‘1
Here are 5 key Python libraries/ concepts that are particularly important for data analysts:

1. Pandas: Pandas is a powerful library for data manipulation and analysis in Python. It provides data structures like DataFrames and Series that make it easy to work with structured data. Pandas offers functions for reading and writing data, cleaning and transforming data, and performing data analysis tasks like filtering, grouping, and aggregating.

2. NumPy: NumPy is a fundamental package for scientific computing in Python. It provides support for large, multi-dimensional arrays and matrices, along with a collection of mathematical functions to operate on these arrays efficiently. NumPy is often used in conjunction with Pandas for numerical computations and data manipulation.

3. Matplotlib and Seaborn: Matplotlib is a popular plotting library in Python that allows you to create a wide variety of static, interactive, and animated visualizations. Seaborn is built on top of Matplotlib and provides a higher-level interface for creating attractive and informative statistical graphics. These libraries are essential for data visualization in data analysis projects.

4. Scikit-learn: Scikit-learn is a machine learning library in Python that provides simple and efficient tools for data mining and data analysis tasks. It includes a wide range of algorithms for classification, regression, clustering, dimensionality reduction, and more. Scikit-learn also offers tools for model evaluation, hyperparameter tuning, and model selection.

5. Data Cleaning and Preprocessing: Data cleaning and preprocessing are crucial steps in any data analysis project. Python offers libraries like Pandas and NumPy for handling missing values, removing duplicates, standardizing data types, scaling numerical features, encoding categorical variables, and more. Understanding how to clean and preprocess data effectively is essential for accurate analysis and modeling.

By mastering these Python concepts and libraries, data analysts can efficiently manipulate and analyze data, create insightful visualizations, apply machine learning techniques, and derive valuable insights from their datasets.

Credits: https://t.iss.one/free4unow_backup

ENJOY LEARNING ๐Ÿ‘๐Ÿ‘
๐Ÿ‘3๐Ÿ‘1
๐Ÿ”Ÿ Project Ideas for a data analyst

Customer Segmentation: Analyze customer data to segment them based on their behaviors, preferences, or demographics, helping businesses tailor their marketing strategies.

Churn Prediction: Build a model to predict customer churn, identifying factors that contribute to churn and proposing strategies to retain customers.

Sales Forecasting: Use historical sales data to create a predictive model that forecasts future sales, aiding inventory management and resource planning.

Market Basket Analysis: Analyze
transaction data to identify associations between products often purchased together, assisting retailers in optimizing product placement and cross-selling.

Sentiment Analysis: Analyze social media or customer reviews to gauge public sentiment about a product or service, providing valuable insights for brand reputation management.

Healthcare Analytics: Examine medical records to identify trends, patterns, or correlations in patient data, aiding in disease prediction, treatment optimization, and resource allocation.

Financial Fraud Detection: Develop algorithms to detect anomalous transactions and patterns in financial data, helping prevent fraud and secure transactions.

A/B Testing Analysis: Evaluate the results of A/B tests to determine the effectiveness of different strategies or changes on websites, apps, or marketing campaigns.

Energy Consumption Analysis: Analyze energy usage data to identify patterns and inefficiencies, suggesting strategies for optimizing energy consumption in buildings or industries.

Real Estate Market Analysis: Study housing market data to identify trends in property prices, rental rates, and demand, assisting buyers, sellers, and investors in making informed decisions.

Remember to choose a project that aligns with your interests and the domain you're passionate about.

Data Analyst Roadmap
๐Ÿ‘‡๐Ÿ‘‡
https://t.iss.one/sqlspecialist/379

ENJOY LEARNING ๐Ÿ‘๐Ÿ‘
๐Ÿ‘4โค2
Skills need for everyday data analysis jobs
๐Ÿ‘5๐Ÿ‘1
MUST ADD these 5 POWER Bl projects to your resume to get hired

Here are 5 mini projects that not only help you to gain experience but also it will help you to build your resume stronger

๐Ÿ“ŒCustomer Churn Analysis
๐Ÿ”— https://www.kaggle.com/code/fabiendaniel/customer-segmentation/input

๐Ÿ“ŒCredit Card Fraud
๐Ÿ”— https://www.kaggle.com/datasets/mlg-ulb/creditcardfraud

๐Ÿ“ŒMovie Sales Analysis
๐Ÿ”—https://www.kaggle.com/datasets/PromptCloudHQ/imdb-data

๐Ÿ“ŒAirline Sector
๐Ÿ”—https://www.kaggle.com/datasets/yuanyuwendymu/airline-

๐Ÿ“ŒFinancial Data Analysis
๐Ÿ”—https://www.kaggle.com/datasets/qks1%7Cver/financial-data-

Simple guide

1. Data Utilization:
- Initiate the process by using the provided datasets for a comprehensive analysis.

2. Domain Research:
- Conduct thorough research within the domain to identify crucial metrics and KPIs for analysis.

3. Dashboard Blueprint:
- Outline the structure and aesthetics of your dashboard, drawing inspiration from existing online dashboards for enhanced design and functionality.

4. Data Handling:
- Import data meticulously, ensuring accuracy. Proceed with cleaning, modeling, and the creation of essential measures and calculations.

5. Question Formulation:
- Brainstorm a list of insightful questions your dashboard aims to answer, covering trends, comparisons, aggregations, and correlations within the data.

6. Platform Integration:
- Utilize Novypro.com as the hosting platform for your dashboard, ensuring seamless integration and accessibility.

7. LinkedIn Visibility:
- Share your dashboard on LinkedIn with a concise post providing context. Include a link to your Novypro-hosted dashboard to foster engagement and professional connections.

Join for more: https://t.iss.one/DataPortfolio

Hope this helps you :)
๐Ÿ‘3