Data Analysis Books | Python | SQL | Excel | Artificial Intelligence | Power BI | Tableau | AI Resources
48.5K subscribers
236 photos
1 video
36 files
396 links
Download Telegram
๐—ช๐—ฎ๐—ป๐˜ ๐˜๐—ผ ๐—ธ๐—ป๐—ผ๐˜„ ๐˜„๐—ต๐—ฎ๐˜ ๐—ต๐—ฎ๐—ฝ๐—ฝ๐—ฒ๐—ป๐˜€ ๐—ถ๐—ป ๐—ฎ ๐—ฟ๐—ฒ๐—ฎ๐—น ๐—ฑ๐—ฎ๐˜๐—ฎ ๐—ฎ๐—ป๐—ฎ๐—น๐˜†๐˜€๐˜ ๐—ถ๐—ป๐˜๐—ฒ๐—ฟ๐˜ƒ๐—ถ๐—ฒ๐˜„?

๐—•๐—ฎ๐˜€๐—ถ๐—ฐ ๐—œ๐—ป๐˜๐—ฟ๐—ผ๐—ฑ๐˜‚๐—ฐ๐˜๐—ถ๐—ผ๐—ป

-Brief introduction about yourself.

-Explanation of how you developed an interest in learning Power BI despite having a chemical background.


๐—ง๐—ผ๐—ผ๐—น๐˜€ ๐—ฃ๐—ฟ๐—ผ๐—ณ๐—ถ๐—ฐ๐—ถ๐—ฒ๐—ป๐—ฐ๐˜†

-Discussion about the tools you are proficient in.

-Detailed explanation of a project that demonstrated your proficiency in these tools.

๐—ฃ๐—ฟ๐—ผ๐—ท๐—ฒ๐—ฐ๐˜ ๐—˜๐˜…๐—ฝ๐—น๐—ฎ๐—ป๐—ฎ๐˜๐—ถ๐—ผ๐—ป

Explain about any Data Analytics Project you did, below are some follow-up questions for sales related data analysis project

Follow-up Question:

Was there any improvement in sales after building the report?

Provide a clear before and after scenario in sales post-report creation.

What areas did you identify where the company was losing sales, and what were your recommendations?

- How do you check the quality of data when it's given to you?
Explain your methods for ensuring data quality.

- How do you handle null values? Describe your approach to managing null values in datasets.


๐—ฆ๐—ค๐—Ÿ ๐—พ๐˜‚๐—ฒ๐˜€๐˜๐—ถ๐—ผ๐—ป๐˜€

-Explain the order in which SQL clauses are executed.

-Write a query to find the percentage of the 18-year-old population.
Details: You are given two tables:
Table 1: Contains states and their respective populations.
Table 2: Contains three columns (state, gender, and population of 18-year-olds).

-Explain window functions and how to rank values in SQL.

- Difference between JOIN and UNION.

-How to return unique values in SQL.

๐—•๐—ฒ๐—ต๐—ฎ๐˜ƒ๐—ถ๐—ผ๐—ฟ๐—ฎ๐—น ๐—ค๐˜‚๐—ฒ๐˜€๐˜๐—ถ๐—ผ๐—ป๐˜€

-Solve a puzzle involving 3 gallons of water in one jar and 2 gallons in another to get exactly 4 gallons.
Step-by-step solution for the water puzzle.

- What skills have you learned on your own? Discuss the skills you self-taught and their impact on your career.

-Describe cases when you showcased team spirit.

-โญ ๐—ฆ๐—ผ๐—ฐ๐—ถ๐—ฎ๐—น ๐— ๐—ฒ๐—ฑ๐—ถ๐—ฎ ๐—”๐—ฝ๐—ฝ ๐—ค๐˜‚๐—ฒ๐˜€๐˜๐—ถ๐—ผ๐—ป
Scenario: Choose any social media app (I choose Discord).
Question: What function/feature would you add to the Discord app, and how would you track its success?

- Rate yourself on Excel, SQL, and Python out of 10.

- What are your strengths in data analytics?

I have curated best 80+ top-notch Data Analytics Resources ๐Ÿ‘‡๐Ÿ‘‡
https://whatsapp.com/channel/0029VaGgzAk72WTmQFERKh02

Like if it helps :)
๐Ÿ‘3โค1
If you want to be a data analyst, you should work to become as good at SQL as possible.

1. SELECT

What a surprise! I need to choose what data I want to return.

2. FROM

Again, no shock here. I gotta choose what table I am pulling my data from.

3. WHERE

This is also pretty basic, but I almost always filter the data to whatever range I need and filter the data to whatever condition Iโ€™m looking for.

4. JOIN

This may surprise you that the next one isnโ€™t one of the other core SQL clauses, but at least for my work, I utilize some kind of join in almost every query I write.

5. Calculations

This isnโ€™t necessarily a function of SQL, but I write a lot of calculations in my queries. Common examples include finding the time between two dates and multiplying and dividing values to get what I need.

Add operators and a couple data cleaning functions and thatโ€™s 80%+ of the SQL I write on the job.
โค1๐Ÿ‘1๐Ÿ‘1
Essential NumPy Functions for Data Analysis

Array Creation:

np.array() - Create an array from a list.

np.zeros((rows, cols)) - Create an array filled with zeros.

np.ones((rows, cols)) - Create an array filled with ones.

np.arange(start, stop, step) - Create an array with a range of values.


Array Operations:

np.sum(array) - Calculate the sum of array elements.

np.mean(array) - Compute the mean.

np.median(array) - Calculate the median.

np.std(array) - Compute the standard deviation.


Indexing and Slicing:

array[start:stop] - Slice an array.

array[row, col] - Access a specific element.

array[:, col] - Select all rows for a column.


Reshaping and Transposing:

array.reshape(new_shape) - Reshape an array.

array.T - Transpose an array.


Random Sampling:

np.random.rand(rows, cols) - Generate random numbers in [0, 1).

np.random.randint(low, high, size) - Generate random integers.


Mathematical Operations:

np.dot(A, B) - Compute the dot product.

np.linalg.inv(A) - Compute the inverse of a matrix.

Here you can find essential Python Interview Resources๐Ÿ‘‡
https://whatsapp.com/channel/0029VaGgzAk72WTmQFERKh02

Like this post for more resources like this ๐Ÿ‘โ™ฅ๏ธ

Share with credits: https://t.iss.one/sqlspecialist

Hope it helps :)
๐Ÿ‘6
Q1: How would you analyze data to understand user connection patterns on a professional network?

Ans: I'd use graph databases like Neo4j for social network analysis. By analyzing connection patterns, I can identify influencers or isolated communities.

Q2: Describe a challenging data visualization you created to represent user engagement metrics.

Ans: I visualized multi-dimensional data showing user engagement across features, regions, and time using tools like D3.js, creating an interactive dashboard with drill-down capabilities.

Q3: How would you identify and target passive job seekers on LinkedIn?

Ans: I'd analyze user behavior patterns, like increased profile updates, frequent visits to job postings, or engagement with career-related content, to identify potential passive job seekers.

Q4: How do you measure the effectiveness of a new feature launched on LinkedIn?


Ans: I'd set up A/B tests, comparing user engagement metrics between those who have access to the new feature and a control group. I'd then analyze metrics like time spent, feature usage frequency, and overall platform engagement to measure effectiveness.
๐Ÿ‘5
Data Analyst vs Data Engineer vs Data Scientist โœ…

Skills required to become a Data Analyst ๐Ÿ‘‡

- Advanced Excel: Proficiency in Excel is crucial for data manipulation, analysis, and creating dashboards.
- SQL/Oracle: SQL is essential for querying databases to extract, manipulate, and analyze data.
- Python/R: Basic scripting knowledge in Python or R for data cleaning, analysis, and simple automations.
- Data Visualization: Tools like Power BI or Tableau for creating interactive reports and dashboards.
- Statistical Analysis: Understanding of basic statistical concepts to analyze data trends and patterns.


Skills required to become a Data Engineer: ๐Ÿ‘‡

- Programming Languages: Strong skills in Python or Java for building data pipelines and processing data.
- SQL and NoSQL: Knowledge of relational databases (SQL) and non-relational databases (NoSQL) like Cassandra or MongoDB.
- Big Data Technologies: Proficiency in Hadoop, Hive, Pig, or Spark for processing and managing large data sets.
- Data Warehousing: Experience with tools like Amazon Redshift, Google BigQuery, or Snowflake for storing and querying large datasets.
- ETL Processes: Expertise in Extract, Transform, Load (ETL) tools and processes for data integration.


Skills required to become a Data Scientist: ๐Ÿ‘‡

- Advanced Tools: Deep knowledge of R, Python, or SAS for statistical analysis and data modeling.
- Machine Learning Algorithms: Understanding and implementation of algorithms using libraries like scikit-learn, TensorFlow, and Keras.
- SQL and NoSQL: Ability to work with both structured and unstructured data using SQL and NoSQL databases.
- Data Wrangling & Preprocessing: Skills in cleaning, transforming, and preparing data for analysis.
- Statistical and Mathematical Modeling: Strong grasp of statistics, probability, and mathematical techniques for building predictive models.
- Cloud Computing: Familiarity with AWS, Azure, or Google Cloud for deploying machine learning models.

Bonus Skills Across All Roles:

- Data Visualization: Mastery in tools like Power BI and Tableau to visualize and communicate insights effectively.
- Advanced Statistics: Strong statistical foundation to interpret and validate data findings.
- Domain Knowledge: Industry-specific knowledge (e.g., finance, healthcare) to apply data insights in context.
- Communication Skills: Ability to explain complex technical concepts to non-technical stakeholders.

I have curated best 80+ top-notch Data Analytics Resources ๐Ÿ‘‡๐Ÿ‘‡
https://t.iss.one/DataSimplifier

Like this post for more content like this ๐Ÿ‘โ™ฅ๏ธ

Share with credits: https://t.iss.one/sqlspecialist

Hope it helps :)
๐Ÿ‘3โค2๐Ÿ‘1
๐ŸšฆTop 10 Data Science Tools๐Ÿšฆ

Here we will examine the top best Data Science tools that are utilized generally by data researchers and analysts. But prior to beginning let us discuss about what is Data Science.

๐Ÿ›ฐWhat is Data Science ?

Data science is a quickly developing field that includes the utilization of logical strategies, calculations, and frameworks to extract experiences and information from organized and unstructured data .

๐Ÿ—ฝTop Data Science Tools that are normally utilized :

1.) Jupyter Notebook : Jupyter Notebook is an open-source web application that permits clients to make and share archives that contain live code, conditions, representations, and narrative text .

2.) Keras : Keras is a famous open-source brain network library utilized in data science. It is known for its usability and adaptability.
Keras provides a range of tools and techniques for dealing with common data science problems, such as overfitting, underfitting, and regularization.

3.) PyTorch : PyTorch is one more famous open-source AI library utilized in information science. PyTorch also offers easy-to-use interfaces for various tasks such as data loading, model building, training, and deployment, making it accessible to beginners as well as experts in the field of machine learning.

4.) TensorFlow : TensorFlow allows data researchers to play out an extensive variety of AI errands, for example, image recognition , natural language processing , and deep learning.

5.) Spark : Spark allows data researchers to perform data processing tasks like data control, investigation, and machine learning , rapidly and effectively.

6.) Hadoop : Hadoop provides a distributed file system (HDFS) and a distributed processing framework (MapReduce) that permits data researchers to handle enormous datasets rapidly.

7.) Tableau : Tableau is a strong data representation tool that permits data researchers to make intuitive dashboards and perceptions. Tableau allows users to combine multiple charts.

8.) SQL : SQL (Structured Query Language) SQL permits data researchers to perform complex queries , join tables, and aggregate data, making it simple to extricate bits of knowledge from enormous datasets. It is a powerful tool for data management, especially for large datasets.

9.) Power BI : Power BI is a business examination tool that conveys experiences and permits clients to make intuitive representations and reports without any problem.

10.) Excel : Excel is a spreadsheet program that broadly utilized in data science. It is an amazing asset for information the board, examination, and visualization .Excel can be used to explore the data by creating pivot tables, histograms, scatterplots, and other types of visualizations.
โค4๐Ÿ‘3
7 Must-Have Tools for Data Analysts in 2025:

โœ… SQL โ€“ Still the #1 skill for querying and managing structured data
โœ… Excel / Google Sheets โ€“ Quick analysis, pivot tables, and essential calculations
โœ… Python (Pandas, NumPy) โ€“ For deep data manipulation and automation
โœ… Power BI โ€“ Transform data into interactive dashboards
โœ… Tableau โ€“ Visualize data patterns and trends with ease
โœ… Jupyter Notebook โ€“ Document, code, and visualize all in one place
โœ… Looker Studio โ€“ A free and sleek way to create shareable reports with live data.

Perfect blend of code, visuals, and storytelling.

React with โค๏ธ for free tutorials on each tool

Share with credits: https://t.iss.one/sqlspecialist

Hope it helps :)
๐Ÿ‘5๐ŸŽ‰2โค1
Data Analyst interview questions ๐Ÿ‘‡

Excel:
1. Explain the difference between the "COUNT", "COUNTA", "COUNTIF", and "COUNTIFS" functions in Excel. When would you use each of these functions, and provide examples?
2. How do you create a pivot chart in Excel, and what are some advantages of using pivot charts for data visualization?
3. Describe the purpose and usage of Excel's "Solver" tool. Can you provide an example of a problem you could solve using the Solver tool?
4. How would you use Excel's "Data Validation" feature to ensure data integrity in a spreadsheet? Provide examples of different types of data validation rules you might implement.
5. What are Excel tables, and how do they differ from regular data ranges? What advantages do tables offer in terms of data management and analysis?

SQL:
1. Discuss the concept of data aggregation in SQL. How do you use aggregate functions such as SUM, AVG, MIN, and MAX to summarize data in a query?
2. Explain the difference between a primary key and a foreign key in SQL. Why are these constraints important in database design?
3. How do you handle duplicates in a SQL query result? Can you demonstrate how to remove duplicates using the DISTINCT keyword or other techniques?
4. Describe the purpose and benefits of using stored procedures in SQL databases. Provide an example of a scenario where you would use a stored procedure.
5. What is SQL injection, and how can you prevent it in your SQL queries or applications? Discuss best practices for writing secure SQL code.

Power BI:
1. How does Power BI handle data refresh and scheduling for reports and dashboards? What options are available for configuring data refresh settings?
2. Describe the concept of row-level security in Power BI. How can you implement row-level security to restrict access to specific data based on user roles or permissions?
3. What is the Power Query Editor in Power BI, and how do you use it to transform and clean data imported from different sources?
4. Discuss the benefits of using Power BI's Direct Query mode versus Import mode for connecting to data sources. When would you choose one mode over the other?
5. How do you share reports and dashboards with other users in Power BI? What options are available for distributing and collaborating on Power BI content within an organization?

I have curated best 80+ top-notch Data Analytics Resources ๐Ÿ‘‡๐Ÿ‘‡
https://whatsapp.com/channel/0029VaGgzAk72WTmQFERKh02

Like if it helps :)
๐Ÿ‘4โค1
How to Think Like a Data Analyst ๐Ÿง ๐Ÿ“Š

Being a great data analyst isnโ€™t just about knowing SQL, Python, or Power BIโ€”itโ€™s about how you think.

Hereโ€™s how to develop a data-driven mindset:

1๏ธโƒฃ Always Ask โ€˜Why?โ€™ ๐Ÿค”
Donโ€™t just look at numbersโ€”question them. If sales dropped, ask: Is it seasonal? A pricing issue? A marketing failure?

2๏ธโƒฃ Break Down Problems Logically ๐Ÿ”
Instead of tackling a problem all at once, divide it into smaller, manageable parts. Example: If customer churn is increasing, analyze trends by segment, region, and time period.

3๏ธโƒฃ Be Skeptical of Data โš ๏ธ
Not all data is accurate. Always check for missing values, biases, and inconsistencies before drawing conclusions.

4๏ธโƒฃ Look for Patterns & Trends ๐Ÿ“ˆ
Raw numbers donโ€™t tell a story until you find relationships. Compare trends over time, detect anomalies, and identify key influencers.

5๏ธโƒฃ Keep Business Goals in Mind ๐ŸŽฏ
Data without context is useless. Always tie insights to business impactโ€”cost reduction, revenue growth, customer satisfaction, etc.

6๏ธโƒฃ Simplify Complex Insights โœ‚๏ธ
Not everyone understands data like you do. Use visuals and clear language to explain findings to non-technical audiences.

7๏ธโƒฃ Be Curious & Experiment ๐Ÿš€
Try different approachesโ€”A/B testing, new models, or alternative data sources. Experimentation leads to better insights.

8๏ธโƒฃ Stay Updated & Keep Learning ๐Ÿ“š
The best analysts stay ahead by learning new tools, techniques, and industry trends. Follow blogs, take courses, and practice regularly.

Thinking like a data analyst is a skill that improves with experience. Keep questioning, analyzing, and improving! ๐Ÿ”ฅ

React with โค๏ธ if you agree with me

Share with credits: https://t.iss.one/sqlspecialist

Hope it helps :)
๐Ÿ†’4๐Ÿ‘1