Как узнать, является ли A подтипом B?
В Java доступны три способа проверки совместимости типов. Функционально они ничем не отличаются, применяются для разных наборов аргументов. В порядке убывания быстродействия:
instanceof – бинарный оператор, самый быстрый и самый используемый. Если есть экземпляр A и можно указать B явно, выбирать надо его. Если A (точнее тип хранящей экземпляр A переменной) и B не из одной цепочки наследования – экземпляр точно не может быть подтипом B и компиляция упадет с ошибкой inconvertible types.
Class::isInstance – метод принимает параметром объект типа A. Его стоит выбрать, когда экземпляр A в наличии, но B – неизвестный на этапе компиляции тип. То есть, для переменных A a и Class bClass, можем проверить bClass.isInstance(a).
Class::isAssignableFrom – принимает Class<A>. Единственное, что остается, если экземпляра A нет. bClass.isAssignableFrom(aClass).
Есть еще четвертый способ – имея экземпляр типа A привести его к B. Если типы были несовместимы, приведение выбросит ClassCastException. Это во всех смыслах плохой способ, построению логики программы на исключениях нет оправдания. Подробная аргументация описана в Effective Java Item 57.
Java Guru🤓 #java
В Java доступны три способа проверки совместимости типов. Функционально они ничем не отличаются, применяются для разных наборов аргументов. В порядке убывания быстродействия:
instanceof – бинарный оператор, самый быстрый и самый используемый. Если есть экземпляр A и можно указать B явно, выбирать надо его. Если A (точнее тип хранящей экземпляр A переменной) и B не из одной цепочки наследования – экземпляр точно не может быть подтипом B и компиляция упадет с ошибкой inconvertible types.
Class::isInstance – метод принимает параметром объект типа A. Его стоит выбрать, когда экземпляр A в наличии, но B – неизвестный на этапе компиляции тип. То есть, для переменных A a и Class bClass, можем проверить bClass.isInstance(a).
Class::isAssignableFrom – принимает Class<A>. Единственное, что остается, если экземпляра A нет. bClass.isAssignableFrom(aClass).
Есть еще четвертый способ – имея экземпляр типа A привести его к B. Если типы были несовместимы, приведение выбросит ClassCastException. Это во всех смыслах плохой способ, построению логики программы на исключениях нет оправдания. Подробная аргументация описана в Effective Java Item 57.
Java Guru🤓 #java
🔥8👍4❤2
Что вернётся, если отправить GET-запрос на /test?
Anonymous Quiz
26%
ответ "Бины одинаковые"
64%
ответ "Бины разные"
5%
Ошибка компиляции
3%
405 Method Not Allowed
2%
404 Not Found
🔥10👍6
Что такое Reflection и как его использовать?
Reflection, рефлексия – это средства манипуляции данными на основе знания о структуре классов этих данных, инструменты метапрограммирования.
Класс Class<T> используется как точка входа в мир рефлекшена. Его экземпляры предоставляют саму метаинформацию о содержимом класса и основные методы для работы с ним. Все классы относящиеся Java Reflection находятся в пакетах java.lang и java.lang.reflect.
Экземпляр класса Class можно получить тремя способами:
🔘 Литералом .class;
🔘 Статическим фабричным методом Class.forName();
🔘 Методом getClass() экземпляров класса.
Использование Reflection API медленное и небезопасное. Оно позволяет ломать инвариантность состояний экземпляра, нарушать инкапсуляцию, и даже менять финальные поля.
Использовать рефлексию естественно в тестовом коде, в инструментах разработки, в фреймворках (особенно в связке с runtime-аннотациями). Рефлекшн в ординарном бизнес-коде обычно говорит о больших проблемах проектирования.
Нередко на интервью просят продемонстрировать пример использования рефлекшна. Один из самых близких для backend-разработчика примеров – инициализация классов-конфигураций в Spring Framework. Фреймворк с помощью рефлекшна сканирует внутренности таких классов. Поля и методы, помеченные специальными аннотациями, воспринимаются как объявления элементов экосистемы фреймворка.
Java Guru🤓 #java
Reflection, рефлексия – это средства манипуляции данными на основе знания о структуре классов этих данных, инструменты метапрограммирования.
Класс Class<T> используется как точка входа в мир рефлекшена. Его экземпляры предоставляют саму метаинформацию о содержимом класса и основные методы для работы с ним. Все классы относящиеся Java Reflection находятся в пакетах java.lang и java.lang.reflect.
Экземпляр класса Class можно получить тремя способами:
Использование Reflection API медленное и небезопасное. Оно позволяет ломать инвариантность состояний экземпляра, нарушать инкапсуляцию, и даже менять финальные поля.
Использовать рефлексию естественно в тестовом коде, в инструментах разработки, в фреймворках (особенно в связке с runtime-аннотациями). Рефлекшн в ординарном бизнес-коде обычно говорит о больших проблемах проектирования.
Нередко на интервью просят продемонстрировать пример использования рефлекшна. Один из самых близких для backend-разработчика примеров – инициализация классов-конфигураций в Spring Framework. Фреймворк с помощью рефлекшна сканирует внутренности таких классов. Поля и методы, помеченные специальными аннотациями, воспринимаются как объявления элементов экосистемы фреймворка.
Java Guru🤓 #java
Please open Telegram to view this post
VIEW IN TELEGRAM
👍11❤5🔥5
В чём отличия интерфейса от абстрактного класса?
Главное отличие – это семантика. Интерфейсы появились еще до Java, как важная концепция ООП. Смысл интерфейса – некое поведение, описание свойства. Причем если придерживаться принципа сегрегации интерфейсов, это описание единственного аспекта поведения.
Класс, даже абстрактный – это комбинация всех свойств и их реализаций, которыми определяются сущности некоторой категории (собственно, класса).
Отсюда вытекает естественность и необходимость множественного наследования для интерфейсов. Опыт таких языков как C++ показал, что множественное наследование классов не нужно и проблемно (см. проблема ромбовидного наследования). По факту же обычно нужно всего лишь переиспользование кода, что не относится к ООП и реализуется в некоторых языках «интерфейсами с независимым состоянием» – примесями.
В Java интерфейс в отличие от абстрактного класса не может иметь состояния. Реализация поведения же допустима только в двух случаях: для статических методов, и default для обычных. Статические методы являются частью всего класса, а не экземпляров. Дефолтная реализация, как говорилось ранее, добавлена только как хак для сохранения совместимости.
В интерфейсах, как публичных описаниях, не имеют смысла и запрещены непубличные члены. Отсюда синтаксическое отличие: модификатор public, как и abstract для методов или static для полей, можно не писать. Запрещены и модификаторы, несовместимые с abstract: final, synchronized и прочие.
На уровне скомпилированного байткода тоже есть небольшие различия: интерфейс помечается флагом ACC_INTERFACE а для класса генерируется конструктор по-умолчанию.
И есть еще одно небольшое отличие. Интерфейс с одним методом можно использовать как функциональный, и инстанциировать лямбда-выражением. Для абстрактного класса даже с единственным методом такое не сработает.
Java Guru🤓 #java
Главное отличие – это семантика. Интерфейсы появились еще до Java, как важная концепция ООП. Смысл интерфейса – некое поведение, описание свойства. Причем если придерживаться принципа сегрегации интерфейсов, это описание единственного аспекта поведения.
Класс, даже абстрактный – это комбинация всех свойств и их реализаций, которыми определяются сущности некоторой категории (собственно, класса).
Отсюда вытекает естественность и необходимость множественного наследования для интерфейсов. Опыт таких языков как C++ показал, что множественное наследование классов не нужно и проблемно (см. проблема ромбовидного наследования). По факту же обычно нужно всего лишь переиспользование кода, что не относится к ООП и реализуется в некоторых языках «интерфейсами с независимым состоянием» – примесями.
В Java интерфейс в отличие от абстрактного класса не может иметь состояния. Реализация поведения же допустима только в двух случаях: для статических методов, и default для обычных. Статические методы являются частью всего класса, а не экземпляров. Дефолтная реализация, как говорилось ранее, добавлена только как хак для сохранения совместимости.
В интерфейсах, как публичных описаниях, не имеют смысла и запрещены непубличные члены. Отсюда синтаксическое отличие: модификатор public, как и abstract для методов или static для полей, можно не писать. Запрещены и модификаторы, несовместимые с abstract: final, synchronized и прочие.
На уровне скомпилированного байткода тоже есть небольшие различия: интерфейс помечается флагом ACC_INTERFACE а для класса генерируется конструктор по-умолчанию.
И есть еще одно небольшое отличие. Интерфейс с одним методом можно использовать как функциональный, и инстанциировать лямбда-выражением. Для абстрактного класса даже с единственным методом такое не сработает.
Java Guru🤓 #java
👍16🔥7❤3
Что будет результатом запуска кода?
Anonymous Quiz
13%
Ошибка компиляции
20%
Executing MyService
8%
BeanNotFoundException
54%
NoUniqueBeanDefinitionException
4%
MyService
👍6🔥2
Что если оба реализуемых интерфейса объявляют один и тот же метод?
Если объявление полностью одинаково – нет никакой проблемы, класс-реализация должен просто определить этот метод.
Когда у обоих интерфейсов объявлены методы с одинаковой сигнатурой, но разными возвращаемыми типами – всё зависит от того, какие именно эти типы.
Переопределение метода (override) еще с Java 5 ковариантно относительно возвращаемого типа. То есть, в наследнике тип результата метода может быть наследником: super метод возвращает Number, @Override метод возвращает Integer.
Если типы не связаны отношением наследования, например String и Long – такой класс невозможно реализовать.
Для примитивов никакой ковариантности возвращаемого типа нет. Даже если типы совместимы относительно присваивания: int→long, int→Integer. В любом из таких случаев будет ошибка о несовместимости возвращаемых типов, для примитивов они должны совпадать в точности.
Если различие в части throws, методы объявлены выбрасывающими разные типы исключений. Правила здесь те же, что для возвращаемых типов – работает ковариантность. Отличие лишь в том, что исключений примитивных типов не бывает, а даже для не являющихся родителем и наследником исключений всегда есть вариант, удовлетворяющий обоим – отсутствие выбрасываемых исключений вообще.
Java Guru🤓 #java
Если объявление полностью одинаково – нет никакой проблемы, класс-реализация должен просто определить этот метод.
Когда у обоих интерфейсов объявлены методы с одинаковой сигнатурой, но разными возвращаемыми типами – всё зависит от того, какие именно эти типы.
Переопределение метода (override) еще с Java 5 ковариантно относительно возвращаемого типа. То есть, в наследнике тип результата метода может быть наследником: super метод возвращает Number, @Override метод возвращает Integer.
Если типы не связаны отношением наследования, например String и Long – такой класс невозможно реализовать.
Для примитивов никакой ковариантности возвращаемого типа нет. Даже если типы совместимы относительно присваивания: int→long, int→Integer. В любом из таких случаев будет ошибка о несовместимости возвращаемых типов, для примитивов они должны совпадать в точности.
Если различие в части throws, методы объявлены выбрасывающими разные типы исключений. Правила здесь те же, что для возвращаемых типов – работает ковариантность. Отличие лишь в том, что исключений примитивных типов не бывает, а даже для не являющихся родителем и наследником исключений всегда есть вариант, удовлетворяющий обоим – отсутствие выбрасываемых исключений вообще.
Java Guru🤓 #java
👍10🔥3❤2
Как изменить значение приватного финального поля?
Стоит сразу сказать, это очень плохая практика. Такое изменение грубо нарушает принципы сокрытия данных, и потенциально ломает инвариантность состояния объекта.
Для этого трюка необходимо прибегнуть к использованию Reflection API.
Сначала получим дескриптор поля – экземпляр класса Field. У объекта метакласса Class<X> интересующего нас класса вызовем метод getDeclaredField(). Просто getField() не сработает, потому что он работает только с публичными полями. Параметром передается строка с именем поля.
Полученного экземпляра Field уже достаточно для доступа к изменяемым приватным полям. Перед обращением требуется сделать его доступным, вызвав setAccessible(true).
Сам доступ осуществляется методами get*() и set*(). Так как Field представляет дескриптор поля класса, без привязки к конкретному экземпляру класса, экземпляр передается параметром в методы доступа. Для статического поля передается null.
Чтобы побороть неизменяемость финального поля, нужно снять его модификатор final. Все модификаторы поля хранятся в поле modifiers дескриптора. То есть, нужно также с помощью рефлекшена сделать доступным и обновить поле уже объекта Field.
Поле modifiers хранит модификаторы в виде битовой маски. Для изменения придется прибегнуть к битовым операторам.
Полный код установки значения 42 в поле myField объекта myObject выглядит так:
Java Guru🤓 #java
Стоит сразу сказать, это очень плохая практика. Такое изменение грубо нарушает принципы сокрытия данных, и потенциально ломает инвариантность состояния объекта.
Для этого трюка необходимо прибегнуть к использованию Reflection API.
Сначала получим дескриптор поля – экземпляр класса Field. У объекта метакласса Class<X> интересующего нас класса вызовем метод getDeclaredField(). Просто getField() не сработает, потому что он работает только с публичными полями. Параметром передается строка с именем поля.
Полученного экземпляра Field уже достаточно для доступа к изменяемым приватным полям. Перед обращением требуется сделать его доступным, вызвав setAccessible(true).
Сам доступ осуществляется методами get*() и set*(). Так как Field представляет дескриптор поля класса, без привязки к конкретному экземпляру класса, экземпляр передается параметром в методы доступа. Для статического поля передается null.
Чтобы побороть неизменяемость финального поля, нужно снять его модификатор final. Все модификаторы поля хранятся в поле modifiers дескриптора. То есть, нужно также с помощью рефлекшена сделать доступным и обновить поле уже объекта Field.
Поле modifiers хранит модификаторы в виде битовой маски. Для изменения придется прибегнуть к битовым операторам.
Полный код установки значения 42 в поле myField объекта myObject выглядит так:
Field field = myObject.class.getDeclaredField( "myField" );
field.setAccessible( true );
Field modifiersField = Field.class.getDeclaredField( "modifiers" );
modifiersField.setAccessible( true );
modifiersField.setInt( field, field.getModifiers() & ~Modifier.FINAL );
field.setInt(myObject, 42);
Java Guru🤓 #java
👍9🔥4❤2
При вызове метода executeTask() три раза, сколько экземпляров TaskProcessor будет создано?
Anonymous Quiz
51%
Один, так как TaskManager синглтон
2%
Два, просто на удачу
41%
Три, так как TaskProcessor prototype
3%
Ошибка компиляции
2%
RuntimeException
👍11🔥5❤1🥴1
Как это будет:
Это бесплатно. Эфир проходит в рамках менторской программы от ШОРТКАТ для Java-разработчиков, которые хотят повысить свой грейд, ЗП и прокачать скиллы.
Переходи в нашего бота, чтобы получить ссылку на эфир → @shortcut_sh_bot
Реклама. ООО "ШОРТКАТ", ИНН: 9731139396, erid: 2Vtzquwsnpa
Please open Telegram to view this post
VIEW IN TELEGRAM
❤3👍2🔥2
Что произойдёт при запуске Spring-приложения с таким классом?
Anonymous Quiz
22%
Не запустится, так как нельзя использовать обе эти аннотации на одном классе
8%
Запустится, Spring создаст два разных бина: один с @Component, другой с @Service
9%
Запустится, но Spring не создаст ни одного бина из-за конфликта
55%
Запустится, будет зарегистрирован один бин
6%
Запустится, но будет RuntimeException
👍16🔥5
Курс «Java Developer. Professional» — это структурированное обучение для разработчиков, которые хотят выйти на новый уровень, освоить актуальный стек технологий и уверенно претендовать на позиции уровня Middle+.
Программа OTUS постоянно обновляется, соответствуя требованиям рынка, а диплом ценится работодателями.
Реклама. ООО «Отус онлайн-образование», ОГРН 1177746618576
Please open Telegram to view this post
VIEW IN TELEGRAM
👍3❤2🔥2
Что будет результатом кода?
Anonymous Quiz
34%
Ошибка компиляции
6%
RuntimeException
46%
0
13%
null
2%
number
👍7🔥7😁3
Как реализовать собственный стрим?
Любой стрим определяется его сплитератором. Spliterator – это специальный разделяемый внутренний итератор.
Есть много способов получить готовый сплитератор или стрим, но чтобы создать полностью свою специфическую логику перебора элементов, придется написать собственный сплитератор.
Поток создается из сплитератора одним из статических методов класса StreamSupport. Вызов его методов осуществляется самим фреймворком. Вкратце его работа выглядит так:
• Элементы перебираются методом tryAdvance, пока он не выдаст false. Через параметр action к элементу применяются последующие операции.
• При применении промежуточных и терминальных операций учитываются характеристики потока, изначально задаваемые методом characteristics.
• Когда обработка стрима распараллеливается, методом trySplit от начала последовательности элементов «откусывается» часть, и возвращается завернутой в новый сплитератор. Текущий продолжает идти по оставшемуся хвосту. В идеале, по возможности эта часть – половина элементов потока. Если разделить уже нельзя, возвращается null.
Java Guru🤓 #java
Любой стрим определяется его сплитератором. Spliterator – это специальный разделяемый внутренний итератор.
Есть много способов получить готовый сплитератор или стрим, но чтобы создать полностью свою специфическую логику перебора элементов, придется написать собственный сплитератор.
Поток создается из сплитератора одним из статических методов класса StreamSupport. Вызов его методов осуществляется самим фреймворком. Вкратце его работа выглядит так:
• Элементы перебираются методом tryAdvance, пока он не выдаст false. Через параметр action к элементу применяются последующие операции.
• При применении промежуточных и терминальных операций учитываются характеристики потока, изначально задаваемые методом characteristics.
• Когда обработка стрима распараллеливается, методом trySplit от начала последовательности элементов «откусывается» часть, и возвращается завернутой в новый сплитератор. Текущий продолжает идти по оставшемуся хвосту. В идеале, по возможности эта часть – половина элементов потока. Если разделить уже нельзя, возвращается null.
Java Guru🤓 #java
👍7🔥5❤3
Бесплатный урок по Apache Kafka⭐️
Учим работать с реальными исходными данными, а не на теоретических примерах.
✅Расскажем про язык Кафки: топики, партиции, продюсеры-консьюмеры, кластер, ноды.
✅Рассмотрим: как работают очереди сообщений, сколько должно быть консьюмеров для эффективной вычитки, как повысить надёжность кластера с помощью репликации данных.
✅Покажем, как развернуть кластер Кафки на своём ПК с 3 нодами, schema-registry и авторизацией.
Обычно в инструкциях кластер из 1 ноды, зукипера и 1 брокера, но это не наш путь, смотрим сразу на практике.
Забрать урок👉🏻 в боте
Учим работать с реальными исходными данными, а не на теоретических примерах.
✅Расскажем про язык Кафки: топики, партиции, продюсеры-консьюмеры, кластер, ноды.
✅Рассмотрим: как работают очереди сообщений, сколько должно быть консьюмеров для эффективной вычитки, как повысить надёжность кластера с помощью репликации данных.
✅Покажем, как развернуть кластер Кафки на своём ПК с 3 нодами, schema-registry и авторизацией.
Обычно в инструкциях кластер из 1 ноды, зукипера и 1 брокера, но это не наш путь, смотрим сразу на практике.
Забрать урок👉🏻 в боте
👍3❤2🔥2