Что делает volatile?
volatile – ключевое слово для работы с многопоточностью. Не то же самое, что volatile в C++, не обязано делать что-либо с кэшем процессора. Оказывает на поле объекта ровно два эффекта.
Во-первых, чтение/запись такого поля становятся атомарными. Это применение актуально только для long и double, и не на всех платформах. Для остальных типов полей это верно и так.
Второй и самый интересный эффект – пара событий запись-чтение для такого поля являются synchronization actions. Значит, между ними существует отношение happens-before. Это значит, что существует гарантия, что произошедшее в памяти до записи будет видно после чтения. То есть будут успешно прочитаны значения, записанные в другие переменные.
Для полного понимания темы рекомендуется к просмотру доклад Алексея Шипилёва и документация. Лучше всего эффект volatile иллюстрирует задача из этого доклада, которую часто и дают в качестве этого вопроса. Вопрос – что выведет данный код:
Этот эффект используется для получения простой и дешевой адаптации программы к многопоточной среде без использования сложных и ошибкоопасных техник блокировок и синхронизаций.
volatile – ключевое слово для работы с многопоточностью. Не то же самое, что volatile в C++, не обязано делать что-либо с кэшем процессора. Оказывает на поле объекта ровно два эффекта.
Во-первых, чтение/запись такого поля становятся атомарными. Это применение актуально только для long и double, и не на всех платформах. Для остальных типов полей это верно и так.
Второй и самый интересный эффект – пара событий запись-чтение для такого поля являются synchronization actions. Значит, между ними существует отношение happens-before. Это значит, что существует гарантия, что произошедшее в памяти до записи будет видно после чтения. То есть будут успешно прочитаны значения, записанные в другие переменные.
Для полного понимания темы рекомендуется к просмотру доклад Алексея Шипилёва и документация. Лучше всего эффект volatile иллюстрирует задача из этого доклада, которую часто и дают в качестве этого вопроса. Вопрос – что выведет данный код:
int a; int b;Трюк в том, что помимо очевидных 21 (поток 2 отработал после 1), 00 (поток 2 отработал до 1, переменные еще не инициализированы) и 01 (поток 2 сработал между записями), может быть и неожиданные 20. Дело в том, что для операторов одного потока действует program order, он гарантирует хотя бы видимость правильной последовательности операций. Между потоками необходим «мост» из happens-before. Его даст применение модификатора volatile к переменной b, неожиданный результат 20 будет исключен.
// thread 1:
a = 1;
b = 2;
// thread 2:
System.out.print(b);
System.out.print(a);
Этот эффект используется для получения простой и дешевой адаптации программы к многопоточной среде без использования сложных и ошибкоопасных техник блокировок и синхронизаций.
👍28
Зачем нужно ключевое слово default?
Изначально (с Java 1.5) это слово использовалось для объявления дефолтного значения элементов аннотации.
В Java 8 вместе с лямбдами и стримами появилась острая необходимость дополнить стандартные интерфейсы новыми методами. Никто естественно не собирался ломать обратную совместимость, и было предложено добавить методы по умолчанию.
Теперь добавление ключевого слова default к методу интерфейса позволяет добавить ему тело. Все новые методы старых интерфейсов снабжаются дефолтной реализацией.
В реализации такого метода его дефолтный вариант вызывается тем же синтаксисом, что и внешний класс из вложенного: InterfaceName.super.methodName().
Методы по умолчанию подошли еще на шаг к введению в Java беспроблемной версии множественного наследования – примесям (mixin). Интерфейс не может иметь состояния, поэтому полноценные примеси всё ещё недоступны.
Изначально (с Java 1.5) это слово использовалось для объявления дефолтного значения элементов аннотации.
В Java 8 вместе с лямбдами и стримами появилась острая необходимость дополнить стандартные интерфейсы новыми методами. Никто естественно не собирался ломать обратную совместимость, и было предложено добавить методы по умолчанию.
Теперь добавление ключевого слова default к методу интерфейса позволяет добавить ему тело. Все новые методы старых интерфейсов снабжаются дефолтной реализацией.
В реализации такого метода его дефолтный вариант вызывается тем же синтаксисом, что и внешний класс из вложенного: InterfaceName.super.methodName().
Методы по умолчанию подошли еще на шаг к введению в Java беспроблемной версии множественного наследования – примесям (mixin). Интерфейс не может иметь состояния, поэтому полноценные примеси всё ещё недоступны.
👍16
Что произойдет в результате компиляции и выполнения кода?
Anonymous Quiz
32%
Вывод в консоль - "HELLO WORLD! HELLO WORLD!"
5%
Вывод в консоль - "HELLO WORLD! Hello World!"
5%
Вывод в консоль - "Hello World! HELLO WORLD!"
22%
Вывод в консоль - "HELLO WORLD! " и выброс исключения после этого
23%
Ошибка компиляции
13%
Ошибка во время выполнения
👍19
В каком порядке указываются модификаторы?
Правила применения модификаторов поля описаны в JLS 8.3.1:
🔘 Нельзя указывать один модификатор дважды;
🔘 Нельзя использовать несколько модификаторов доступа одновременно.
Порядок указания вообще свободный, но обычно используется следующий:
@Аннотации, доступ,
🔘 Те же требования, что и к полю;
🔘 Совместно с abstract кроме аннотаций можно использовать только protected или public;
🔘 native метод не может использовать strictfp.
И так же не требуется, но рекомендуется использовать такой порядок:
@Аннотации, доступ,
Правила применения модификаторов поля описаны в JLS 8.3.1:
🔘 Нельзя указывать один модификатор дважды;
🔘 Нельзя использовать несколько модификаторов доступа одновременно.
Порядок указания вообще свободный, но обычно используется следующий:
@Аннотации, доступ,
static final transient volatileТребования для модификаторов метода находятся в JLS 8.4.3:
🔘 Те же требования, что и к полю;
🔘 Совместно с abstract кроме аннотаций можно использовать только protected или public;
🔘 native метод не может использовать strictfp.
И так же не требуется, но рекомендуется использовать такой порядок:
@Аннотации, доступ,
abstract static final synchronized native strictfp
👍20
Что будет в результате компиляции и выполнения данного кода?
Anonymous Quiz
43%
1
34%
2
5%
Ошибка выполнения
18%
Ошибка компиляции
👍22😱5❤2🥱1
Что такое короткое замыкание логического оператора?
Логические операторы || и && лево-ассоциативны, то есть их параметры вычисляются слева направо. Если первое значение оказалось true в || или false в && – конечный результат уже предрешен, он будет тем же. В этом случае происходит так называемое «короткое замыкание» (short-circuiting) – оставшийся второй аргумент не вычисляется за ненадобностью.
Эту особенность иногда удобно эксплуатировать, например для проверки на null в одну строку:
Вдобавок доступен оператор «исключающее или» ^. Он почти никогда не используется для булевых параметров, потому что абсолютно эквивалентен более интуитивно понятному !=. Другие битовые операторы для логических аргументов недоступны.
Логические операторы || и && лево-ассоциативны, то есть их параметры вычисляются слева направо. Если первое значение оказалось true в || или false в && – конечный результат уже предрешен, он будет тем же. В этом случае происходит так называемое «короткое замыкание» (short-circuiting) – оставшийся второй аргумент не вычисляется за ненадобностью.
Эту особенность иногда удобно эксплуатировать, например для проверки на null в одну строку:
return param != null && param.getBoolMember();Но иногда такая ситуация влечет за собой неожиданные плавающие баги, если второй аргумент – не переменная, а функция с побочным эффектом. Для этой ситуации введены версии операторов без короткого замыкания: | и &. Это логические вариации «битового и» и «битового или».
Вдобавок доступен оператор «исключающее или» ^. Он почти никогда не используется для булевых параметров, потому что абсолютно эквивалентен более интуитивно понятному !=. Другие битовые операторы для логических аргументов недоступны.
👍21🔥4❤1
Дайте точную оценку по времени данному алгоритму.
Anonymous Quiz
30%
O(n)
30%
O(100 * n)
7%
O(log(n))
30%
O(n* n)
4%
O(1)
🤨24👍12😱5🤯3⚡1
Как узнать, является ли A подтипом B?
В Java доступны три способа проверки совместимости типов. Функционально они ничем не отличаются, применяются для разных наборов аргументов. В порядке убывания быстродействия:
instanceof – бинарный оператор, самый быстрый и самый используемый. Если есть экземпляр A и можно указать B явно, выбирать надо его. Если A (точнее тип хранящей экземпляр A переменной) и B не из одной цепочки наследования – экземпляр точно не может быть подтипом B и компиляция упадет с ошибкой inconvertible types.
Class::isInstance – метод принимает параметром объект типа A. Его стоит выбрать, когда экземпляр A в наличии, но B – неизвестный на этапе компиляции тип. То есть, для переменных A a и Class bClass, можем проверить bClass.isInstance(a).
Class::isAssignableFrom – принимает Class<A>. Единственное, что остается, если экземпляра A нет. bClass.isAssignableFrom(aClass).
Есть еще четвертый способ – имея экземпляр типа A привести его к B. Если типы были несовместимы, приведение выбросит ClassCastException. Это во всех смыслах плохой способ, построению логики программы на исключениях нет оправдания.
В Java доступны три способа проверки совместимости типов. Функционально они ничем не отличаются, применяются для разных наборов аргументов. В порядке убывания быстродействия:
instanceof – бинарный оператор, самый быстрый и самый используемый. Если есть экземпляр A и можно указать B явно, выбирать надо его. Если A (точнее тип хранящей экземпляр A переменной) и B не из одной цепочки наследования – экземпляр точно не может быть подтипом B и компиляция упадет с ошибкой inconvertible types.
Class::isInstance – метод принимает параметром объект типа A. Его стоит выбрать, когда экземпляр A в наличии, но B – неизвестный на этапе компиляции тип. То есть, для переменных A a и Class bClass, можем проверить bClass.isInstance(a).
Class::isAssignableFrom – принимает Class<A>. Единственное, что остается, если экземпляра A нет. bClass.isAssignableFrom(aClass).
Есть еще четвертый способ – имея экземпляр типа A привести его к B. Если типы были несовместимы, приведение выбросит ClassCastException. Это во всех смыслах плохой способ, построению логики программы на исключениях нет оправдания.
👍29❤2🔥2
Что будет в результате компиляции и выполнения данного кода?
Anonymous Quiz
27%
Вывод в консоль Hello и завершение работы программы StackOferflowError
27%
Вывод в консоль Error
25%
Ошибка компиляции
21%
Вывод в консоль Hello и Error
👍21
Как скопировать массив?
Object.clone() и System.arraycopy(). Нативные способы копирования, самые быстрые из возможных. Унаследованный от базового класса clone() копирует весь массив без лишних аргументов. arraycopy(), наоборот, максимально гибкий – позволяет копировать часть массива и указывать массив, в который копировать.
Arrays.copyOf(), Arrays.copyOfRange() и все их перегрузки. Утилитарные методы, которые дают более специализированные способы копирования. Внутри все используют System.arraycopy().
Копирование через стрим. Arrays.stream(sourceArray).toArray(). Удобно когда нужно встроить дополнительные промежуточные операции.
Сторонними библиотеками. Обычно обеспечивают дополнительные удобства, такие как проверка корректности параметров, приведения типов, и прочие. Пример – класс SerializationUtils из Apache Commons.
Все перечисленные способы создают поверхностную копию – оба массива в итоге ссылаются на одни и те же объекты. Лучший способ создать глубокую копию – реализовать ее вручную. Сначала оператором new создается пустой массив нужного размера, затем в цикле заполняется копиями элементов. Stream API здесь может дать удобный интерфейс реализации, и оптимизировать копирование с помощью многопоточности.
Самый быстрый, но ужасный по эффективности способ глубокого копирования массива без реализации копирования отдельных элементов – сериализация+десериализация. Сложно придумать оправдание такому плохому способу для продакшна, но этот метод вполне подходит для реализации быстрого прототипа, или для тестового кода.
Object.clone() и System.arraycopy(). Нативные способы копирования, самые быстрые из возможных. Унаследованный от базового класса clone() копирует весь массив без лишних аргументов. arraycopy(), наоборот, максимально гибкий – позволяет копировать часть массива и указывать массив, в который копировать.
Arrays.copyOf(), Arrays.copyOfRange() и все их перегрузки. Утилитарные методы, которые дают более специализированные способы копирования. Внутри все используют System.arraycopy().
Копирование через стрим. Arrays.stream(sourceArray).toArray(). Удобно когда нужно встроить дополнительные промежуточные операции.
Сторонними библиотеками. Обычно обеспечивают дополнительные удобства, такие как проверка корректности параметров, приведения типов, и прочие. Пример – класс SerializationUtils из Apache Commons.
Все перечисленные способы создают поверхностную копию – оба массива в итоге ссылаются на одни и те же объекты. Лучший способ создать глубокую копию – реализовать ее вручную. Сначала оператором new создается пустой массив нужного размера, затем в цикле заполняется копиями элементов. Stream API здесь может дать удобный интерфейс реализации, и оптимизировать копирование с помощью многопоточности.
Самый быстрый, но ужасный по эффективности способ глубокого копирования массива без реализации копирования отдельных элементов – сериализация+десериализация. Сложно придумать оправдание такому плохому способу для продакшна, но этот метод вполне подходит для реализации быстрого прототипа, или для тестового кода.
👍15🔥3
Можно ли поймать Error?
Технически, Error как и любой другой Throwable можно поймать в блок catch. Такой код абсолютно валидный и скомпилируется без проблем.
На практике, согласно спецификации, значение исключения типа Error – необрабатываемая ошибка, ловить которую нет смысла.
Более того, выброс исключения подтипа VirtualMachineError означает, что JVM находится в сломанном состоянии. Дальнейшая работа непредсказуема: OutOfMemoryError приводит к невозможности создания новых объектов, StackOverflowError теряет фреймы стека вызова, и так далее.
Так как ловить Error не нужно, объявление её в секции throws сигнатуры метода необязательно. Как и RuntimeException, Error – разновидность unchecked exception.
Технически, Error как и любой другой Throwable можно поймать в блок catch. Такой код абсолютно валидный и скомпилируется без проблем.
На практике, согласно спецификации, значение исключения типа Error – необрабатываемая ошибка, ловить которую нет смысла.
Более того, выброс исключения подтипа VirtualMachineError означает, что JVM находится в сломанном состоянии. Дальнейшая работа непредсказуема: OutOfMemoryError приводит к невозможности создания новых объектов, StackOverflowError теряет фреймы стека вызова, и так далее.
Так как ловить Error не нужно, объявление её в секции throws сигнатуры метода необязательно. Как и RuntimeException, Error – разновидность unchecked exception.
🔥17👍13
Чем отличается Closeable от AutoCloseable?
Интерфейс AutoCloseable представляет объект-хранилище некоего ресурса, пока тот не закрыт. В единственном его методе close() объявляется логика закрытия этого ресурса. Пример – дескриптор открытого файла (ObjectOutputStream).
Особенность этого интерфейса в том, что его применение позволяет использовать объект в языковой конструкции try-with-resource. Всё это появилось в Java версии 7.
До Java 7 уже существовал похожий интерфейс – Closeable. Смысл его точно такой же. Он всё еще доступен в стандартной библиотеке для обратной совместимости, но в новом коде рекомендуется использовать AutoCloseable. Чтобы экземпляры старого Closeable тоже можно было использовать в try-with-resource, новый интерфейс был добавлен его родителем.
Проблема старого интерфейса Closeable была в узости типа исключений, которые может выбрасывать close(). Ковариантность позволила расширить тип в базовом интерфейсе AutoCloseable с IOException до Exception.
Еще одно отличие – контракт метода close(). Старый Closeable требует его идемпотентности, тогда как новый AutoCloseable разрешает методу иметь побочные эффекты.
Интерфейс AutoCloseable представляет объект-хранилище некоего ресурса, пока тот не закрыт. В единственном его методе close() объявляется логика закрытия этого ресурса. Пример – дескриптор открытого файла (ObjectOutputStream).
Особенность этого интерфейса в том, что его применение позволяет использовать объект в языковой конструкции try-with-resource. Всё это появилось в Java версии 7.
До Java 7 уже существовал похожий интерфейс – Closeable. Смысл его точно такой же. Он всё еще доступен в стандартной библиотеке для обратной совместимости, но в новом коде рекомендуется использовать AutoCloseable. Чтобы экземпляры старого Closeable тоже можно было использовать в try-with-resource, новый интерфейс был добавлен его родителем.
Проблема старого интерфейса Closeable была в узости типа исключений, которые может выбрасывать close(). Ковариантность позволила расширить тип в базовом интерфейсе AutoCloseable с IOException до Exception.
Еще одно отличие – контракт метода close(). Старый Closeable требует его идемпотентности, тогда как новый AutoCloseable разрешает методу иметь побочные эффекты.
👍18🔥1
Что будет в результате компиляции и выполнения данного кода?
Anonymous Quiz
41%
Пустой вывод в консоль
25%
Ошибка компиляции
27%
Вывод в консоль - true
7%
Ошибка исполнения
👍18
Как Java выбирает перегруженный метод?
Метод может быть перегружен различными параметрами – в классе могут существовать несколько разных методов с одинаковым названием. При вызове такого метода выбор конкретного варианта происходит на этапе компиляции (раннее связывание). В деталях алгоритм выбора перегруженного метода описан в спецификации.
Выбор происходит в два шага. На первом выбирается одна из трех фаз – множество подходящих методов.
1. Методы, в которые переданные параметры подходят по типу либо как есть, либо с применением расширения (upcasting) примитивов или ссылочных типов, исключая vararg-параметры.
2. Если в фазе 1 подходящих методов не нашлось, к ее условиям добавляются возможность боксинга/анбоксинга параметров. Обратите внимание, в комбинации работает только боксинг+расширение, но не наоборот.
3. Если и для фазы 2 нет удовлетворительных сигнатур, к условиям поиска подключаются vararg-параметры.
В случае, когда ни один метод не нашелся ни в одной фазе, компиляция завершается ошибкой.
Когда в фазе имеется несколько подходящих методов, используется наиболее специфичный среди них (но только в рамках данной фазы!).
Метод A считается более специфичным чем B, когда типы параметров одного метода – подтипы типов параметров другого. То есть любые возможные значения аргументов A подошли бы и для B, но не наоборот.
В условии специфичности говорится о типах параметров метода, а не о типах передаваемых значений. Так что боксинг/анбоксинг не учитывается, и метод с параметром int не считается более специфичным, чем с параметром Object (в отличие от Integer). Хотя, целое число можно передавать и как Object, и как Integer. Подробное объяснение.
Когда среди методов невозможно выделить один наиболее специфичный, происходит ошибка компиляции.
Метод может быть перегружен различными параметрами – в классе могут существовать несколько разных методов с одинаковым названием. При вызове такого метода выбор конкретного варианта происходит на этапе компиляции (раннее связывание). В деталях алгоритм выбора перегруженного метода описан в спецификации.
Выбор происходит в два шага. На первом выбирается одна из трех фаз – множество подходящих методов.
1. Методы, в которые переданные параметры подходят по типу либо как есть, либо с применением расширения (upcasting) примитивов или ссылочных типов, исключая vararg-параметры.
2. Если в фазе 1 подходящих методов не нашлось, к ее условиям добавляются возможность боксинга/анбоксинга параметров. Обратите внимание, в комбинации работает только боксинг+расширение, но не наоборот.
3. Если и для фазы 2 нет удовлетворительных сигнатур, к условиям поиска подключаются vararg-параметры.
В случае, когда ни один метод не нашелся ни в одной фазе, компиляция завершается ошибкой.
Когда в фазе имеется несколько подходящих методов, используется наиболее специфичный среди них (но только в рамках данной фазы!).
Метод A считается более специфичным чем B, когда типы параметров одного метода – подтипы типов параметров другого. То есть любые возможные значения аргументов A подошли бы и для B, но не наоборот.
В условии специфичности говорится о типах параметров метода, а не о типах передаваемых значений. Так что боксинг/анбоксинг не учитывается, и метод с параметром int не считается более специфичным, чем с параметром Object (в отличие от Integer). Хотя, целое число можно передавать и как Object, и как Integer. Подробное объяснение.
Когда среди методов невозможно выделить один наиболее специфичный, происходит ошибка компиляции.
👍23❤1🔥1