Как удалить элемент из ArrayList при итерации?
Обычно формулируется в виде задачи на внимательность «что здесь не так», например
Не исключение, но неожиданный результат получится если пользоваться не итератором, а обычным циклом for – при каждом удалении нумерация элементов будет сдвигаться.
Единственный способ удалить элемент из коллекции при обходе, не получив при этом ConcurrentModificationException или неопределенное поведение – удалить с помощью remove() того же инстанса итератора. Вариант ListIterator поможет, если в теле цикла требуется и работа с индексами.
Некоторые коллекции, такие как CopyOnWriteArrayList и ConcurrentHashMap адаптированные под многопоточную среду и имеют fail-safe итераторы.
Обычно формулируется в виде задачи на внимательность «что здесь не так», например
for (String item : arrayList)Подвох в том, что итератор ArrayList, который используется в таком варианте цикла for, является fail-fast, то есть не поддерживает итерацию с параллельной модификацией. А параллельная модификация случается даже в одном потоке, что демонстрирует этот пример. Следующий шаг итератора после удаления элемента выбросит ConcurrentModificationException.
if (item.length() > 2)
arrayList.remove(item);
Не исключение, но неожиданный результат получится если пользоваться не итератором, а обычным циклом for – при каждом удалении нумерация элементов будет сдвигаться.
Единственный способ удалить элемент из коллекции при обходе, не получив при этом ConcurrentModificationException или неопределенное поведение – удалить с помощью remove() того же инстанса итератора. Вариант ListIterator поможет, если в теле цикла требуется и работа с индексами.
Некоторые коллекции, такие как CopyOnWriteArrayList и ConcurrentHashMap адаптированные под многопоточную среду и имеют fail-safe итераторы.
👍33❤1
Какова структура Java Collections Framework? Почему Map не Collection?
Collection – хранилище отдельных значений, Map – хранилище ключ-значение. Отсюда разные методы этих интерфейсов. Если проще, разные сигнатуры методов put и add.
Collection в свою очередь делится на три основных группы, и соответствующих им интерфейса:
🔘 List – упорядоченные списки с возможностью содержания дубликатов и доступа по индексу (random access);
🔘 Queue – обычно FIFO-коллекции, предполагает добавление/удаление элементов с края. Интерфейс-наследник Deque – двусвязная очередь;
🔘 Set – не обязательно упорядоченный набор уникальных (с точки зрения equals) значений;
HashMap можно привести к виду Collection вызвав например keySet(), entrySet() или values().
Collection – хранилище отдельных значений, Map – хранилище ключ-значение. Отсюда разные методы этих интерфейсов. Если проще, разные сигнатуры методов put и add.
Collection в свою очередь делится на три основных группы, и соответствующих им интерфейса:
🔘 List – упорядоченные списки с возможностью содержания дубликатов и доступа по индексу (random access);
🔘 Queue – обычно FIFO-коллекции, предполагает добавление/удаление элементов с края. Интерфейс-наследник Deque – двусвязная очередь;
🔘 Set – не обязательно упорядоченный набор уникальных (с точки зрения equals) значений;
HashMap можно привести к виду Collection вызвав например keySet(), entrySet() или values().
👍20❤2🔥1
Как работает HashMap?
Один из популярнейших вопросов, потому что содержит много нюансов. Лучше всего подготовиться к нему помогает чтение исходного кода HashMap.
Нюансы которые стоит повторить и запомнить:
🔘 Общий принцип: внутренний массив table, содержащий бакеты (корзины) – списки элементов с одинаковыми пересчитанными хэш-суммами;
🔘 Пересчет хэш-суммы для умещения int индексов в capacity ячейках table;
🔘 rehash – удвоение размера table при достижении threshold (capacity*loadFactor) занятых бакетов;
🔘 Невозможность сжать однажды раздувшийся table;
🔘 Два способа разрешения коллизий: используемый в HashMap метод цепочек и альтернатива – открытая адресация;
🔘 Варианты для многопоточного использования: пересинхронизированная Hashtable и умная ConcurrentHashMap;
🔘 Оптимизация Java 8: превращение списка в бакете в дерево при достижении 8 элементов – при большом количестве коллизий скорость доступа растет с O(n) до O(log(n));
🔘 Явное использование бакета 0 для ключа null;
🔘 Связь с HashSet – HashMap, в котором используются только ключи;
🔘 Нет гарантий порядка элементов;
Обсуждая этот вопрос на интервью вы обязательно затронете особенности методов equals/hashCode. Возможно придется поговорить об альтернативных хранилищах ключ-значение – TreeMap, LinkedHashMap.
Один из популярнейших вопросов, потому что содержит много нюансов. Лучше всего подготовиться к нему помогает чтение исходного кода HashMap.
Нюансы которые стоит повторить и запомнить:
🔘 Общий принцип: внутренний массив table, содержащий бакеты (корзины) – списки элементов с одинаковыми пересчитанными хэш-суммами;
🔘 Пересчет хэш-суммы для умещения int индексов в capacity ячейках table;
🔘 rehash – удвоение размера table при достижении threshold (capacity*loadFactor) занятых бакетов;
🔘 Невозможность сжать однажды раздувшийся table;
🔘 Два способа разрешения коллизий: используемый в HashMap метод цепочек и альтернатива – открытая адресация;
🔘 Варианты для многопоточного использования: пересинхронизированная Hashtable и умная ConcurrentHashMap;
🔘 Оптимизация Java 8: превращение списка в бакете в дерево при достижении 8 элементов – при большом количестве коллизий скорость доступа растет с O(n) до O(log(n));
🔘 Явное использование бакета 0 для ключа null;
🔘 Связь с HashSet – HashMap, в котором используются только ключи;
🔘 Нет гарантий порядка элементов;
Обсуждая этот вопрос на интервью вы обязательно затронете особенности методов equals/hashCode. Возможно придется поговорить об альтернативных хранилищах ключ-значение – TreeMap, LinkedHashMap.
👍21
Как отсортировать Set/Map?
Для Map можно привести ключи/значения к виду Collection, переложить в новый List и отсортировать с помощью Collections.sort. То же делается с Set. Этот метод конечно же неэффективный, так как потребует полного копирования содержимого.
Эффективный способ – хранить данные уже отсортированными. Для таких реализаций созданы интерфейсы-наследники SortedSet и SortedMap.
Реализации SortedSet дают линейный порядок множества. Элементы упорядочены по возрастанию. Порядок либо натуральный (элементы реализуют интерфейс Comparable), либо его определяет переданный в конструктор Comparator.
Этот интерфейс добавляет методы получения подмножества от указанного элемента (tailSet), до элемента (headSet), и между двумя (subSet). Подмножество включает нижнюю границу, не включает верхнюю.
SortedSet расширяется интерфейсом NavigableSet для итерации по порядку, получения ближайшего снизу (floor), сверху (ceiling), большего (higher) и меньшего (lower) заданному элемента.
Все те же правила применяются к элементам SortedMap/NavigableMap относительно их ключей.
Основными реализациями являются TreeSet и TreeMap. Внутри это самобалансирующиеся красно-чёрные деревья. Их структура и способ балансировки – вопрос достойный отдельного поста. Другая любопытная реализация из java.util.concurrent – ConcurrentSkipListMap.
Для Map можно привести ключи/значения к виду Collection, переложить в новый List и отсортировать с помощью Collections.sort. То же делается с Set. Этот метод конечно же неэффективный, так как потребует полного копирования содержимого.
Эффективный способ – хранить данные уже отсортированными. Для таких реализаций созданы интерфейсы-наследники SortedSet и SortedMap.
Реализации SortedSet дают линейный порядок множества. Элементы упорядочены по возрастанию. Порядок либо натуральный (элементы реализуют интерфейс Comparable), либо его определяет переданный в конструктор Comparator.
Этот интерфейс добавляет методы получения подмножества от указанного элемента (tailSet), до элемента (headSet), и между двумя (subSet). Подмножество включает нижнюю границу, не включает верхнюю.
SortedSet расширяется интерфейсом NavigableSet для итерации по порядку, получения ближайшего снизу (floor), сверху (ceiling), большего (higher) и меньшего (lower) заданному элемента.
Все те же правила применяются к элементам SortedMap/NavigableMap относительно их ключей.
Основными реализациями являются TreeSet и TreeMap. Внутри это самобалансирующиеся красно-чёрные деревья. Их структура и способ балансировки – вопрос достойный отдельного поста. Другая любопытная реализация из java.util.concurrent – ConcurrentSkipListMap.
👍22🔥1
Какой будет результат компиляции и выполнения кода?
Anonymous Quiz
53%
I'm child
19%
I'm parent
2%
I'm child I'm parent
6%
I'm parent I'm child
3%
Ошибка выполнения
16%
Ошибка компиляции
👍17⚡1❤1
Как создать immutable-коллекцию?
В Collections Framework имеется набор методов Collections.unmodifiable*() для различных типов коллекций. Такой метод вернет read-only обертку над переданной коллекцией. Так же как с Collections.synchronized*(), внутри используется не копия, а оригинальная коллекция.
Другой менее очевидный способ – метод Collections.empty*(). Он возвращает немодифицируемую пустую коллекцию. Попытка добавить элемент как и в случае unmodifiable приведет к UnsupportedOperationException.
В Collections Framework имеется набор методов Collections.unmodifiable*() для различных типов коллекций. Такой метод вернет read-only обертку над переданной коллекцией. Так же как с Collections.synchronized*(), внутри используется не копия, а оригинальная коллекция.
Другой менее очевидный способ – метод Collections.empty*(). Он возвращает немодифицируемую пустую коллекцию. Попытка добавить элемент как и в случае unmodifiable приведет к UnsupportedOperationException.
👍19
Какими коллекциями пользоваться в многопоточной среде?
Первый вариант – превратить в синхронизированную обычную коллекцию, вызвав соответствующий ее типу метод Collections.synchronized*(). Самый общий и самый примитивный способ, создает обертку с синхронизацией всех операций с помощью synchronized.
Если работа с коллекцией состоит в основном из чтения, лучшая в плане производительности альтернатива – CopyOnWriteArrayList, и содержащий его в реализации CopyOnWriteArraySet. Потокобезопасность достигается копированием внутреннего массива при любой модификации, оригинальный массив остается immutable. Program order достигается модификатором volatile на внутреннем массиве.
Третий вариант – использование Concurrent-коллекций:
🔘 Неблокирующие хэш-таблицы ConcurrentSkipListMap, ConcurrentHashMap и ConcurrentSkipListSet (хэш-таблица в основе реализации)
🔘 Неблокирующие очереди ConcurrentLinkedQueue и ConcurrentLinkedDeque
🔘 Большой набор различных блокирующих очередей
Первый вариант – превратить в синхронизированную обычную коллекцию, вызвав соответствующий ее типу метод Collections.synchronized*(). Самый общий и самый примитивный способ, создает обертку с синхронизацией всех операций с помощью synchronized.
Если работа с коллекцией состоит в основном из чтения, лучшая в плане производительности альтернатива – CopyOnWriteArrayList, и содержащий его в реализации CopyOnWriteArraySet. Потокобезопасность достигается копированием внутреннего массива при любой модификации, оригинальный массив остается immutable. Program order достигается модификатором volatile на внутреннем массиве.
Третий вариант – использование Concurrent-коллекций:
🔘 Неблокирующие хэш-таблицы ConcurrentSkipListMap, ConcurrentHashMap и ConcurrentSkipListSet (хэш-таблица в основе реализации)
🔘 Неблокирующие очереди ConcurrentLinkedQueue и ConcurrentLinkedDeque
🔘 Большой набор различных блокирующих очередей
👍19🔥5
Каким будет результат выполнения данного кода?
Anonymous Quiz
22%
True
73%
False
2%
Ошибка времени выполнения (RuntimeException)
3%
Ошибка компиляции
👍22
Как создать HashMap сразу с элементами?
Проблема с созданием Map в том, что в отличие от других коллекций инициализация должна принять параметрами набор пар неопределенного размера. Поэтому varargs здесь не подходит.
Самый примитивный, многословный, но простой способ – добавить элементы сразу после создания. Для мапы-поля класса это можно сделать в конструкторе или блоке инициализации.
Удобно создавать HashMap из стрима. Коллектор Collectors.toMap(keyMapper, valueMapper) с помощью мапперов превратит объекты потока в ключи и значения.
В Java 9 наконец появились фабричные метод Map.of(), перегруженный для разного количества пар параметров, и Map.ofEntries() с varargs-аргументом.
До Java 9 подобное было реализовано во многих популярных библиотеках, например ImmutableMap.of в Guava и MapUtils.putAll() в Apache Commons.
Проблема с созданием Map в том, что в отличие от других коллекций инициализация должна принять параметрами набор пар неопределенного размера. Поэтому varargs здесь не подходит.
Самый примитивный, многословный, но простой способ – добавить элементы сразу после создания. Для мапы-поля класса это можно сделать в конструкторе или блоке инициализации.
Map<String, String> map = new HashMap<>();Идиома double brace initialization. Компактная запись, которая расшифровывается компилятором как создание анонимного класса-наследника от HashMap, с добавлением элементов в блоке статической инициализации. Создание нового класса приводит к дополнительным накладным расходам, так делать не рекомендуется.
{
map.put("one", "first");
map.put("two", "second");
}
new HashMap<String, String>() {{Для специальных случаев, пустой и одноэлементной неизменяемых мап, в классе Collections есть соответствующие фабричные методы emptyMap() и singletonMap(key, value).
put("one", "first");
put("two", "second");
}};
Удобно создавать HashMap из стрима. Коллектор Collectors.toMap(keyMapper, valueMapper) с помощью мапперов превратит объекты потока в ключи и значения.
В Java 9 наконец появились фабричные метод Map.of(), перегруженный для разного количества пар параметров, и Map.ofEntries() с varargs-аргументом.
До Java 9 подобное было реализовано во многих популярных библиотеках, например ImmutableMap.of в Guava и MapUtils.putAll() в Apache Commons.
👍22🔥1
Что напечатает следующий код?
Anonymous Quiz
31%
Object 3 String 3
6%
String 3 String 3
54%
Object 5 String 5
9%
String 5 String 5
👍20
Можно ли хранить null в стандартных коллекциях?
Все интерфейсы Collections Framework позволяют своим реализациям самостоятельно решать, поддерживать ли null-значения. Если реализация не может принять null, она выбрасывает NullPointerException или ClassCastException.
Большинство списков (LinkedList, ArrayList) принимают null без проблем. Большинство очередей (Queue и Deque) не хранят null – возвращая из читающего метода null они сообщают пользователю о пустоте коллекции.
Unmodifiable Maps не допускают null-ов совсем. Обычные изменяемые мапы обычно не испытывают трудности со значениями null. А вот с ключами дело обстоит интереснее.
HashMap не может посчитать hash-сумму от null. Но вместо этого для таких ключей просто используется бакет номер 0.
Иногда этот вопрос дается как задача с подвохом про TreeMap. Nullability её ключей зависит от готовности к этому компаратора. Натуральный порядок (который работает для Comparable ключей) не поддерживает null. Раньше в реализации был баг, который позволял положить значение по ключу null в корень дерева без выброса исключения.
Для значений Set-ов действуют те же правила, что для ключей лежащих в основе их Map-ов.
Все интерфейсы Collections Framework позволяют своим реализациям самостоятельно решать, поддерживать ли null-значения. Если реализация не может принять null, она выбрасывает NullPointerException или ClassCastException.
Большинство списков (LinkedList, ArrayList) принимают null без проблем. Большинство очередей (Queue и Deque) не хранят null – возвращая из читающего метода null они сообщают пользователю о пустоте коллекции.
Unmodifiable Maps не допускают null-ов совсем. Обычные изменяемые мапы обычно не испытывают трудности со значениями null. А вот с ключами дело обстоит интереснее.
HashMap не может посчитать hash-сумму от null. Но вместо этого для таких ключей просто используется бакет номер 0.
Иногда этот вопрос дается как задача с подвохом про TreeMap. Nullability её ключей зависит от готовности к этому компаратора. Натуральный порядок (который работает для Comparable ключей) не поддерживает null. Раньше в реализации был баг, который позволял положить значение по ключу null в корень дерева без выброса исключения.
Для значений Set-ов действуют те же правила, что для ключей лежащих в основе их Map-ов.
👍25
Знание и применение алгоритмов на практике
В большинстве случаев алгоритмы влияют на написания кода, и при должном навыке они напрямую встраиваются в рутинные практические задачи. Поэтому знание алгоритмов проверяют на собеседованиях разработчиков всех уровней - от джуниора до синьора.
Сегодня хочу поделиться с вами полезным видео с алгоритмической секцией на собеседовании в Яндекс. Кирилл Розов на своем канале опубликовал видео этого трека с реальным кандидатом, которого выбрал сам. В качестве собеседующего выступил Антон Рычагов, руководитель службы разработки в Яндексе. Кандидат целился на роль мидла в android-разработке.
В видео был подробный разбор алгоритмической секции, так что тем, кто целится на должность в бигтехе, будет суперполезно. Главный вывод: знание алгоритмов — это то, что помогает работодателю понять, как кандидат умеет мыслить и как подходит к проблемам.
В большинстве случаев алгоритмы влияют на написания кода, и при должном навыке они напрямую встраиваются в рутинные практические задачи. Поэтому знание алгоритмов проверяют на собеседованиях разработчиков всех уровней - от джуниора до синьора.
Сегодня хочу поделиться с вами полезным видео с алгоритмической секцией на собеседовании в Яндекс. Кирилл Розов на своем канале опубликовал видео этого трека с реальным кандидатом, которого выбрал сам. В качестве собеседующего выступил Антон Рычагов, руководитель службы разработки в Яндексе. Кандидат целился на роль мидла в android-разработке.
В видео был подробный разбор алгоритмической секции, так что тем, кто целится на должность в бигтехе, будет суперполезно. Главный вывод: знание алгоритмов — это то, что помогает работодателю понять, как кандидат умеет мыслить и как подходит к проблемам.
YouTube
Собеседование в Яндекс. Алгоритмы
Собеседование прошло в два этапа: вступительное слово Антона Рычагова и решение алгоритмических задач.
Интервьюер: Антон Рычагов, руководитель службы разработки в Яндексе
🔗 Каналы "Android Broadcast" https://taplink.cc/android_broadcast
🔗 Поддержать проект…
Интервьюер: Антон Рычагов, руководитель службы разработки в Яндексе
🔗 Каналы "Android Broadcast" https://taplink.cc/android_broadcast
🔗 Поддержать проект…
👍10🔥4
Что выбрать, Stack или Queue?
Queue – один из основных интерфейсов Java Collections Framework. В общем случае (но не обязательно) представляет FIFO-коллекцию – элементы можно добавлять в хвост, брать или удалять из головы. Его наследник, интерфейс Deque (double ended queue, двусторонняя очередь), позволяет манипулировать элементами на обеих сторонах.
Stack – LIFO коллекция. То есть добавлять и удалять элементы можно только с одного конца. Кроме того, стек наследуется от Vector, и тоже является пересинхронизированным и устаревшим. Его документация явно рекомендует предпочесть использовать Deque.
Queue – один из основных интерфейсов Java Collections Framework. В общем случае (но не обязательно) представляет FIFO-коллекцию – элементы можно добавлять в хвост, брать или удалять из головы. Его наследник, интерфейс Deque (double ended queue, двусторонняя очередь), позволяет манипулировать элементами на обеих сторонах.
Stack – LIFO коллекция. То есть добавлять и удалять элементы можно только с одного конца. Кроме того, стек наследуется от Vector, и тоже является пересинхронизированным и устаревшим. Его документация явно рекомендует предпочесть использовать Deque.
👍18
Каков результат выполнения следующего кода?
Anonymous Quiz
17%
Ошибка компиляции в строке 1
18%
Ошибка компиляции в строке 9
10%
Ошибка выполнения в строке 9
12%
Ошибка компиляции в строке 18
13%
10
28%
15
3%
20
👍12🔥6☃1🥴1🍌1
Что происходит внутри HashMap.put()?
Мы уже рассматривали хэш-таблицы в целом, теперь рассмотрим в деталях, как новые ключ и значение складываются в HashMap.
1. Вычисляется хэш ключа. Если ключ null, хэш считается равным 0. Чтобы достичь лучшего распределения, результат вызова hashCode() «перемешивается»: его старшие биты XOR-ятся на младшие.
2. Значения внутри хэш-таблицы хранятся в специальных структурах данных – нодах, в массиве. Из хэша высчитывается номер бакета – индекс для значения в этом массиве. Полученный хэш обрезается по текущей длине массива. Длина – всегда степень двойки, так что для скорости используется битовая операция &.
3. В бакете ищется нода. В ячейке массива лежит не просто одна нода, а связка всех нод, которые туда попали. Исполнение проходит по этой связке (цепочке или дереву), и ищет ноду с таким же ключом. Ключ сравнивается с имеющимися сначала на ==, затем на equals.
4. Если нода найдена – её значение просто заменяется новым. Работа метода на этом завершается.
5. Если ноды с таким же ключом в бакете пока нет – добавляемая пара ключ-значение запаковывается в новый объект типа Node, и прикрепляется к структуре существующих нод бакета. Ноды составляют структуру за счет того, что в ноде хранится ссылка на следующий элемент (для дерева – следующие элементы). Кроме самой пары и ссылок, чтобы потом не считать заново, записывается и хэш ключа.
6. В случае, когда структурой была цепочка а не дерево, и длина цепочки превысила 7 элементов – происходит процедура treeification – превращение списка в самобалансирующееся дерево. В случае коллизии это ускоряет доступ к элементам на чтение с O(n) до O(log(n)). У comparable-ключей для балансировки используется их естественный порядок. Другие ключи балансируются по порядку имен их классов и значениям identityHashCode-ов. Для маленьких хэш-таблиц (< 64 бакетов) «одеревенение» заменяется увеличением (см. п.8).
7. Если новая нода попала в пустую ячейку, заняла новый бакет – увеличивается счетчик структурных модификаций. Изменение этого счетчика сообщит всем итераторам контейнера, что при следующем обращении они должны выбросить ConcurrentModificationException.
8. Когда количество занятых бакетов массива превысило пороговое (capacity * load factor), внутренний массив увеличивается вдвое, а для всего содержимого выполняется рехэш – все имеющиеся ноды перераспределяются по бакетам по тем же правилам, но уже с учетом нового размера.
Мы уже рассматривали хэш-таблицы в целом, теперь рассмотрим в деталях, как новые ключ и значение складываются в HashMap.
1. Вычисляется хэш ключа. Если ключ null, хэш считается равным 0. Чтобы достичь лучшего распределения, результат вызова hashCode() «перемешивается»: его старшие биты XOR-ятся на младшие.
2. Значения внутри хэш-таблицы хранятся в специальных структурах данных – нодах, в массиве. Из хэша высчитывается номер бакета – индекс для значения в этом массиве. Полученный хэш обрезается по текущей длине массива. Длина – всегда степень двойки, так что для скорости используется битовая операция &.
3. В бакете ищется нода. В ячейке массива лежит не просто одна нода, а связка всех нод, которые туда попали. Исполнение проходит по этой связке (цепочке или дереву), и ищет ноду с таким же ключом. Ключ сравнивается с имеющимися сначала на ==, затем на equals.
4. Если нода найдена – её значение просто заменяется новым. Работа метода на этом завершается.
5. Если ноды с таким же ключом в бакете пока нет – добавляемая пара ключ-значение запаковывается в новый объект типа Node, и прикрепляется к структуре существующих нод бакета. Ноды составляют структуру за счет того, что в ноде хранится ссылка на следующий элемент (для дерева – следующие элементы). Кроме самой пары и ссылок, чтобы потом не считать заново, записывается и хэш ключа.
6. В случае, когда структурой была цепочка а не дерево, и длина цепочки превысила 7 элементов – происходит процедура treeification – превращение списка в самобалансирующееся дерево. В случае коллизии это ускоряет доступ к элементам на чтение с O(n) до O(log(n)). У comparable-ключей для балансировки используется их естественный порядок. Другие ключи балансируются по порядку имен их классов и значениям identityHashCode-ов. Для маленьких хэш-таблиц (< 64 бакетов) «одеревенение» заменяется увеличением (см. п.8).
7. Если новая нода попала в пустую ячейку, заняла новый бакет – увеличивается счетчик структурных модификаций. Изменение этого счетчика сообщит всем итераторам контейнера, что при следующем обращении они должны выбросить ConcurrentModificationException.
8. Когда количество занятых бакетов массива превысило пороговое (capacity * load factor), внутренний массив увеличивается вдвое, а для всего содержимого выполняется рехэш – все имеющиеся ноды перераспределяются по бакетам по тем же правилам, но уже с учетом нового размера.
🔥24👍16🐳1
Kotlin заходит в Telegram!
Рассказываем про Kotlin — молодой язык родом из Питера, который вовсю теснит Java в мобильной и бэкенд-разработке.
Его официально поддерживает Google, используют Jira и Adobe, а разработчики топовых приложений для Android переписывают на Kotlin свои продукты. Советуем подписаться, чтобы узнавать больше!
Рассказываем про Kotlin — молодой язык родом из Питера, который вовсю теснит Java в мобильной и бэкенд-разработке.
Его официально поддерживает Google, используют Jira и Adobe, а разработчики топовых приложений для Android переписывают на Kotlin свои продукты. Советуем подписаться, чтобы узнавать больше!
👍5🔥2