📚 Пройди тест на знание Java и получи доступ к 7️⃣ 2️⃣ открытым урокам по Java
Два открытых урока можно посмотреть без регистрации и оценить формат обучения. Для доступа ко всем открытым урокам из курса «Java Developer. Professional» от OTUS необходимо пройти входное тестирование: ответить на 20 вопросов и уложиться в тайминг.
📊 -Курс рассчитан на профессионалов с практическим опытом работы на Java.
На курсе вы освоите:
- создание современных Java-приложений;
- основы функционирования JVM (сборка мусора, byteCode);
- приемы применения многопоточности;
- решение задач уровня Middle+;
- современные фреймворки Spring WebFlux, Kafka, реактивный Postgres и Kubernetes;
- написание кода чище и быстрее.
Забудьте о скучном обучении — здесь вас ждут настоящие челленджи и нестандартные практические решения. А еще сильные проекты для портфолио и карьерный сапорт! 📅 Старт группы уже 29 августа 2024г . Доступна рассрочка на обучение.
➡️ НАЧАТЬ ТЕСТИРОВАНИЕ
Два открытых урока можно посмотреть без регистрации и оценить формат обучения. Для доступа ко всем открытым урокам из курса «Java Developer. Professional» от OTUS необходимо пройти входное тестирование: ответить на 20 вопросов и уложиться в тайминг.
📊 -
- создание современных Java-приложений;
- основы функционирования JVM (сборка мусора, byteCode);
- приемы применения многопоточности;
- решение задач уровня Middle+;
- современные фреймворки Spring WebFlux, Kafka, реактивный Postgres и Kubernetes;
- написание кода чище и быстрее.
Забудьте о скучном обучении — здесь вас ждут настоящие челленджи и нестандартные практические решения. А еще сильные проекты для портфолио и карьерный сапорт!
➡️ НАЧАТЬ ТЕСТИРОВАНИЕ
Реклама. ООО «Отус онлайн-образование», ОГРН 1177746618576, www.otus.ru
Please open Telegram to view this post
VIEW IN TELEGRAM
👍5❤2🥰2🔥1
Чем отличается interface от @interface?
Среди интерфейсов выделяется особая группа, которая не объявляет никаких методов. Пример такого интерфейса – Serializable. Такие интерфейсы добавляют классу некую семантику, которая позже используется либо с помощью рефлексии (и instanceof), либо вообще не программно, а как информация для разработчиков и инструментов разработки. Это маркерные интерфейсы. Маркерный интерфейс представляет метаинформацию класса.
Начиная с Java 1.5 в языке появился новый вид типов – аннотации. Они берут на себя и расширяют возможности маркерного интерфейса:
1. Можно применять аннотацию не только к классу или интерфейсу, но почти к чему угодно: к пакетам, к методам, их параметрам, переменным. Полный список представлен в перечислении ElementType;
2. Аннотация может нести данные в своих элементах
3. Аннотация может не присутствовать в рантайме, или даже остаться только в исходнике, не попав в байткод вовсе. Определяется ее RetentionPolicy;
4. Можно сделать аннотацию не наследуемой, просто не помечая ее @Inherited;
5. И конечно же, синтаксис. Примененная аннотация с первого взгляда отличается от настоящих интерфейсов.
Joshua Block в главе 37 Effective Java выделяет два преимущества маркерных интерфейсов перед аннотациями на этапе компиляции:
1. Можно требовать использование только маркированного параметра, так как маркерный интерфейс – это еще и тип;
2. Можно сузить применяемость маркера к только определенным типам, сделав интерфейс их наследником.
Возвращаясь к вопросу, ключевое слово @interface объявляет аннотацию, interface – интерфейс.
В результате компиляции в .class-файле аннотация превращается в интерфейс-наследник java.lang.annotation.Annotation, помеченный флагом ACC_ANNOTATION. Элементы превращаются в абстрактные методы. Этим объясняется синтаксис объявления. Специфичные для аннотаций атрибуты описаны в JVMS 4.7.16-4.7.22.
К слову, конструкции вида @something в javadoc называются тэгами. Они выглядят похоже на аннотации, также представляют метаинформацию для документации, но технически не имеют с ними ничего общего.
Среди интерфейсов выделяется особая группа, которая не объявляет никаких методов. Пример такого интерфейса – Serializable. Такие интерфейсы добавляют классу некую семантику, которая позже используется либо с помощью рефлексии (и instanceof), либо вообще не программно, а как информация для разработчиков и инструментов разработки. Это маркерные интерфейсы. Маркерный интерфейс представляет метаинформацию класса.
Начиная с Java 1.5 в языке появился новый вид типов – аннотации. Они берут на себя и расширяют возможности маркерного интерфейса:
1. Можно применять аннотацию не только к классу или интерфейсу, но почти к чему угодно: к пакетам, к методам, их параметрам, переменным. Полный список представлен в перечислении ElementType;
2. Аннотация может нести данные в своих элементах
3. Аннотация может не присутствовать в рантайме, или даже остаться только в исходнике, не попав в байткод вовсе. Определяется ее RetentionPolicy;
4. Можно сделать аннотацию не наследуемой, просто не помечая ее @Inherited;
5. И конечно же, синтаксис. Примененная аннотация с первого взгляда отличается от настоящих интерфейсов.
Joshua Block в главе 37 Effective Java выделяет два преимущества маркерных интерфейсов перед аннотациями на этапе компиляции:
1. Можно требовать использование только маркированного параметра, так как маркерный интерфейс – это еще и тип;
2. Можно сузить применяемость маркера к только определенным типам, сделав интерфейс их наследником.
Возвращаясь к вопросу, ключевое слово @interface объявляет аннотацию, interface – интерфейс.
В результате компиляции в .class-файле аннотация превращается в интерфейс-наследник java.lang.annotation.Annotation, помеченный флагом ACC_ANNOTATION. Элементы превращаются в абстрактные методы. Этим объясняется синтаксис объявления. Специфичные для аннотаций атрибуты описаны в JVMS 4.7.16-4.7.22.
К слову, конструкции вида @something в javadoc называются тэгами. Они выглядят похоже на аннотации, также представляют метаинформацию для документации, но технически не имеют с ними ничего общего.
👍10🔥4🎉3❤2
Когда Class.getClassLoader вернет null?
Этот вопрос поднимает две темы. Первая – класс Class в целом. Экземпляры Class<T> представляют runtime-описание типов. В терминах этого описания перечисления считаются классами, аннотации – интерфейсами. В основном приходится взаимодействовать с метаклассами при работе с рефлексией или загрузчиками.
По большей части эти экземпляры класса Class состоят из содержимого .class-файла. Создаются они только внутри класслоадера. Особенности их хранения в памяти обсуждаются в предыдущем посте.
Вторая тема для разговора здесь – особенности класса Class для примитивов, массивов и void. Для получения таких экземпляров используется тот же синтаксис, что и для обычных классов: void.class, int.class, float[][].class. Конструкция foo.class – это не обращение к члену, а литерал класса.
Для void типом-параметром T выступает специальный неинстанциируемый тип java.lang.Void. Тип-параметр примитива – соответствующий класс-враппер. Хотя для самого класса-враппера будет отдельный экземпляр Class. То есть int.class != Integer.class.
Метод getClassLoader обычного класса или интерфейса вернет загрузчик, который его загрузил. null может вернуться для загруженного bootstrap-класслоадером типа. Для массива возвращается то же, что для типа его элементов. Для примитивов и void результатом всегда будет null.
Этот вопрос поднимает две темы. Первая – класс Class в целом. Экземпляры Class<T> представляют runtime-описание типов. В терминах этого описания перечисления считаются классами, аннотации – интерфейсами. В основном приходится взаимодействовать с метаклассами при работе с рефлексией или загрузчиками.
По большей части эти экземпляры класса Class состоят из содержимого .class-файла. Создаются они только внутри класслоадера. Особенности их хранения в памяти обсуждаются в предыдущем посте.
Вторая тема для разговора здесь – особенности класса Class для примитивов, массивов и void. Для получения таких экземпляров используется тот же синтаксис, что и для обычных классов: void.class, int.class, float[][].class. Конструкция foo.class – это не обращение к члену, а литерал класса.
Для void типом-параметром T выступает специальный неинстанциируемый тип java.lang.Void. Тип-параметр примитива – соответствующий класс-враппер. Хотя для самого класса-враппера будет отдельный экземпляр Class. То есть int.class != Integer.class.
Метод getClassLoader обычного класса или интерфейса вернет загрузчик, который его загрузил. null может вернуться для загруженного bootstrap-класслоадером типа. Для массива возвращается то же, что для типа его элементов. Для примитивов и void результатом всегда будет null.
👍10🔥4
Ждем вас на открытом уроке, где вы узнаете, что такое Java Instrumentation API и для чего нужны агенты. В онлайне изучим агент, позволяющий изменять код бизнес-классов для добавления дополнительных trace-логов для отладки приложения.
Вебинар подходит Java-разработчикам, которые сталкиваются с вопросами производительности приложений.
После занятия вы сможете писать и подключать Java-агенты самостоятельно, а также будете иметь представление о возможностях Java Instrumentation API.
Встречаемся 22 августа в 20:00 мск.
Спикер — Tech Lead в одном из крупнейших российских банков и кандидат технических наук.
Реклама. ООО «Отус онлайн-образование», ОГРН 1177746618576
Please open Telegram to view this post
VIEW IN TELEGRAM
👍6🔥4❤2
Как узнать, является ли A подтипом B?
В Java доступны три способа проверки совместимости типов. Функционально они ничем не отличаются, применяются для разных наборов аргументов. В порядке убывания быстродействия:
instanceof – бинарный оператор, самый быстрый и самый используемый. Если есть экземпляр A и можно указать B явно, выбирать надо его. Если A (точнее тип хранящей экземпляр A переменной) и B не из одной цепочки наследования – экземпляр точно не может быть подтипом B и компиляция упадет с ошибкой inconvertible types.
Class::isInstance – метод принимает параметром объект типа A. Его стоит выбрать, когда экземпляр A в наличии, но B – неизвестный на этапе компиляции тип. То есть, для переменных A a и Class bClass, можем проверить bClass.isInstance(a).
Class::isAssignableFrom – принимает Class<A>. Единственное, что остается, если экземпляра A нет. bClass.isAssignableFrom(aClass).
Есть еще четвертый способ – имея экземпляр типа A привести его к B. Если типы были несовместимы, приведение выбросит ClassCastException. Это во всех смыслах плохой способ, построению логики программы на исключениях нет оправдания. Подробная аргументация описана в Effective Java Item 57.
В Java доступны три способа проверки совместимости типов. Функционально они ничем не отличаются, применяются для разных наборов аргументов. В порядке убывания быстродействия:
instanceof – бинарный оператор, самый быстрый и самый используемый. Если есть экземпляр A и можно указать B явно, выбирать надо его. Если A (точнее тип хранящей экземпляр A переменной) и B не из одной цепочки наследования – экземпляр точно не может быть подтипом B и компиляция упадет с ошибкой inconvertible types.
Class::isInstance – метод принимает параметром объект типа A. Его стоит выбрать, когда экземпляр A в наличии, но B – неизвестный на этапе компиляции тип. То есть, для переменных A a и Class bClass, можем проверить bClass.isInstance(a).
Class::isAssignableFrom – принимает Class<A>. Единственное, что остается, если экземпляра A нет. bClass.isAssignableFrom(aClass).
Есть еще четвертый способ – имея экземпляр типа A привести его к B. Если типы были несовместимы, приведение выбросит ClassCastException. Это во всех смыслах плохой способ, построению логики программы на исключениях нет оправдания. Подробная аргументация описана в Effective Java Item 57.
1👍23🔥3❤1
Ждем вас на открытом вебинаре, где мы познакомимся с одной из базовых тем языка Java — Обобщения (Generics).
Изучим, для чего они нужны, где они применяются в стандартной Java-библиотеке, а также как их можно использовать в своем коде.
Встречаемся 21 августа в 20:00 мск.
Спикер Александр Фисунов — Senior Kotlin Developer в SSP Software на проекте ВТБ, опытный Java-разработчик и кандидат технических наук.
Реклама. ООО «Отус онлайн-образование», ОГРН 1177746618576, www.otus.ru
Please open Telegram to view this post
VIEW IN TELEGRAM
👍3❤2🔥2
Что такое Reflection и как его использовать?
Reflection, рефлексия – это средства манипуляции данными на основе знания о структуре классов этих данных, инструменты метапрограммирования.
Класс Class<T> используется как точка входа в мир рефлекшена. Его экземпляры предоставляют саму метаинформацию о содержимом класса и основные методы для работы с ним. Все классы относящиеся Java Reflection находятся в пакетах java.lang и java.lang.reflect.
Экземпляр класса Class можно получить тремя способами:
🔘 Литералом .class;
🔘 Статическим фабричным методом Class.forName();
🔘 Методом getClass() экземпляров класса.
Использование Reflection API медленное и небезопасное. Оно позволяет ломать инвариантность состояний экземпляра, нарушать инкапсуляцию, и даже менять финальные поля.
Использовать рефлексию естественно в тестовом коде, в инструментах разработки, в фреймворках (особенно в связке с runtime-аннотациями). Рефлекшн в ординарном бизнес-коде обычно говорит о больших проблемах проектирования.
Нередко на интервью просят продемонстрировать пример использования рефлекшна. Один из самых близких для backend-разработчика примеров – инициализация классов-конфигураций в Spring Framework. Фреймворк с помощью рефлекшна сканирует внутренности таких классов. Поля и методы, помеченные специальными аннотациями, воспринимаются как объявления элементов экосистемы фреймворка.
Reflection, рефлексия – это средства манипуляции данными на основе знания о структуре классов этих данных, инструменты метапрограммирования.
Класс Class<T> используется как точка входа в мир рефлекшена. Его экземпляры предоставляют саму метаинформацию о содержимом класса и основные методы для работы с ним. Все классы относящиеся Java Reflection находятся в пакетах java.lang и java.lang.reflect.
Экземпляр класса Class можно получить тремя способами:
🔘 Литералом .class;
🔘 Статическим фабричным методом Class.forName();
🔘 Методом getClass() экземпляров класса.
Использование Reflection API медленное и небезопасное. Оно позволяет ломать инвариантность состояний экземпляра, нарушать инкапсуляцию, и даже менять финальные поля.
Использовать рефлексию естественно в тестовом коде, в инструментах разработки, в фреймворках (особенно в связке с runtime-аннотациями). Рефлекшн в ординарном бизнес-коде обычно говорит о больших проблемах проектирования.
Нередко на интервью просят продемонстрировать пример использования рефлекшна. Один из самых близких для backend-разработчика примеров – инициализация классов-конфигураций в Spring Framework. Фреймворк с помощью рефлекшна сканирует внутренности таких классов. Поля и методы, помеченные специальными аннотациями, воспринимаются как объявления элементов экосистемы фреймворка.
👍17👏3❤2
В чём отличия интерфейса от абстрактного класса?
Главное отличие – это семантика. Интерфейсы появились еще до Java, как важная концепция ООП. Смысл интерфейса – некое поведение, описание свойства. Причем если придерживаться принципа сегрегации интерфейсов, это описание единственного аспекта поведения.
Класс, даже абстрактный – это комбинация всех свойств и их реализаций, которыми определяются сущности некоторой категории (собственно, класса).
Отсюда вытекает естественность и необходимость множественного наследования для интерфейсов. Опыт таких языков как C++ показал, что множественное наследование классов не нужно и проблемно (см. проблема ромбовидного наследования). По факту же обычно нужно всего лишь переиспользование кода, что не относится к ООП и реализуется в некоторых языках «интерфейсами с независимым состоянием» – примесями.
В Java интерфейс в отличие от абстрактного класса не может иметь состояния. Реализация поведения же допустима только в двух случаях: для статических методов, и default для обычных. Статические методы являются частью всего класса, а не экземпляров. Дефолтная реализация, как говорилось ранее, добавлена только как хак для сохранения совместимости.
В интерфейсах, как публичных описаниях, не имеют смысла и запрещены непубличные члены. Отсюда синтаксическое отличие: модификатор public, как и abstract для методов или static для полей, можно не писать. Запрещены и модификаторы, несовместимые с abstract: final, synchronized и прочие.
На уровне скомпилированного байткода тоже есть небольшие различия: интерфейс помечается флагом ACC_INTERFACE а для класса генерируется конструктор по-умолчанию.
И есть еще одно небольшое отличие. Интерфейс с одним методом можно использовать как функциональный, и инстанциировать лямбда-выражением. Для абстрактного класса даже с единственным методом такое не сработает.
Главное отличие – это семантика. Интерфейсы появились еще до Java, как важная концепция ООП. Смысл интерфейса – некое поведение, описание свойства. Причем если придерживаться принципа сегрегации интерфейсов, это описание единственного аспекта поведения.
Класс, даже абстрактный – это комбинация всех свойств и их реализаций, которыми определяются сущности некоторой категории (собственно, класса).
Отсюда вытекает естественность и необходимость множественного наследования для интерфейсов. Опыт таких языков как C++ показал, что множественное наследование классов не нужно и проблемно (см. проблема ромбовидного наследования). По факту же обычно нужно всего лишь переиспользование кода, что не относится к ООП и реализуется в некоторых языках «интерфейсами с независимым состоянием» – примесями.
В Java интерфейс в отличие от абстрактного класса не может иметь состояния. Реализация поведения же допустима только в двух случаях: для статических методов, и default для обычных. Статические методы являются частью всего класса, а не экземпляров. Дефолтная реализация, как говорилось ранее, добавлена только как хак для сохранения совместимости.
В интерфейсах, как публичных описаниях, не имеют смысла и запрещены непубличные члены. Отсюда синтаксическое отличие: модификатор public, как и abstract для методов или static для полей, можно не писать. Запрещены и модификаторы, несовместимые с abstract: final, synchronized и прочие.
На уровне скомпилированного байткода тоже есть небольшие различия: интерфейс помечается флагом ACC_INTERFACE а для класса генерируется конструктор по-умолчанию.
И есть еще одно небольшое отличие. Интерфейс с одним методом можно использовать как функциональный, и инстанциировать лямбда-выражением. Для абстрактного класса даже с единственным методом такое не сработает.
👍18🔥2
Мечтаешь о карьере в бигтехе?
Приходи на интенсив в Открытые школы Т1 для Java-разработчиков с опытом от года. Лучшие выпускники получат оффер от Т1 — крупнейшей ИТ-компании по версии RAEX 2023🔝 и уникальный карьерный фаст-трек до мидла в бигтехе.
В портфеле Холдинга Т1 800+ масштабных проектов и 70+ продуктов и услуг.
🧠 Всего за полгода мы выпустили 500+ специалистов. Участники присоединились к командам финтех-разработки и разработки ИТ-продуктов. Выпускников также ждут в юнитах облачных сервисов, развития ИИ-решений, интеграции и консалтинга.
Программа курса: spring framework; docker; синхронное и асинхронное взаимодействие, брокеры сообщений; паттерны, SOLID.
⌛️ Быстрое обучение: 1 месяц.
💻Гибкий формат: все этапы онлайн, занятия по вечерам.
Готов прокачаться вместе с экспертами индустрии? Тогда подавай заявку до 22 августа!
Старт интенсива — 28 августа.
Реклама. ООО "Т1". ИНН 7720484492.
Приходи на интенсив в Открытые школы Т1 для Java-разработчиков с опытом от года. Лучшие выпускники получат оффер от Т1 — крупнейшей ИТ-компании по версии RAEX 2023🔝 и уникальный карьерный фаст-трек до мидла в бигтехе.
В портфеле Холдинга Т1 800+ масштабных проектов и 70+ продуктов и услуг.
🧠 Всего за полгода мы выпустили 500+ специалистов. Участники присоединились к командам финтех-разработки и разработки ИТ-продуктов. Выпускников также ждут в юнитах облачных сервисов, развития ИИ-решений, интеграции и консалтинга.
Программа курса: spring framework; docker; синхронное и асинхронное взаимодействие, брокеры сообщений; паттерны, SOLID.
⌛️ Быстрое обучение: 1 месяц.
💻Гибкий формат: все этапы онлайн, занятия по вечерам.
Готов прокачаться вместе с экспертами индустрии? Тогда подавай заявку до 22 августа!
Старт интенсива — 28 августа.
Реклама. ООО "Т1". ИНН 7720484492.
👍5❤3👏3😱1
Что если оба реализуемых интерфейса объявляют один и тот же метод?
Если объявление полностью одинаково – нет никакой проблемы, класс-реализация должен просто определить этот метод.
Когда у обоих интерфейсов объявлены методы с одинаковой сигнатурой, но разными возвращаемыми типами – всё зависит от того, какие именно эти типы.
Переопределение метода (override) еще с Java 5 ковариантно относительно возвращаемого типа. То есть, в наследнике тип результата метода может быть наследником: super метод возвращает Number, @Override метод возвращает Integer.
Если типы не связаны отношением наследования, например String и Long – такой класс невозможно реализовать.
Для примитивов никакой ковариантности возвращаемого типа нет. Даже если типы совместимы относительно присваивания: int→long, int→Integer. В любом из таких случаев будет ошибка о несовместимости возвращаемых типов, для примитивов они должны совпадать в точности.
Если различие в части throws, методы объявлены выбрасывающими разные типы исключений. Правила здесь те же, что для возвращаемых типов – работает ковариантность. Отличие лишь в том, что исключений примитивных типов не бывает, а даже для не являющихся родителем и наследником исключений всегда есть вариант, удовлетворяющий обоим – отсутствие выбрасываемых исключений вообще.
Если объявление полностью одинаково – нет никакой проблемы, класс-реализация должен просто определить этот метод.
Когда у обоих интерфейсов объявлены методы с одинаковой сигнатурой, но разными возвращаемыми типами – всё зависит от того, какие именно эти типы.
Переопределение метода (override) еще с Java 5 ковариантно относительно возвращаемого типа. То есть, в наследнике тип результата метода может быть наследником: super метод возвращает Number, @Override метод возвращает Integer.
Если типы не связаны отношением наследования, например String и Long – такой класс невозможно реализовать.
Для примитивов никакой ковариантности возвращаемого типа нет. Даже если типы совместимы относительно присваивания: int→long, int→Integer. В любом из таких случаев будет ошибка о несовместимости возвращаемых типов, для примитивов они должны совпадать в точности.
Если различие в части throws, методы объявлены выбрасывающими разные типы исключений. Правила здесь те же, что для возвращаемых типов – работает ковариантность. Отличие лишь в том, что исключений примитивных типов не бывает, а даже для не являющихся родителем и наследником исключений всегда есть вариант, удовлетворяющий обоим – отсутствие выбрасываемых исключений вообще.
1👍17❤6🔥5
Хотите освоить ключевой навык для Java-разработчика и обеспечить безопасность данных в своих проектах?
Ждем вас на открытом вебинаре 27 августа в 20:00 мск, где мы разберем:
- основы Spring Security;
- применение Spring Security для защиты данных и повышения безопасности проектов;
- применение магии «Alohomora» для открытия запертых дверей в мире безопасности.
Урок идеально подходит для Java- и Kotlin-разработчиков.
Встречаемся в преддверии старта курса «Разработчик на Spring Framework».
Все участники вебинара получат специальную цену на обучение!
Реклама. ООО «Отус онлайн-образование», ОГРН 1177746618576, www.otus.ru
Please open Telegram to view this post
VIEW IN TELEGRAM
1👍3🔥2
Как изменить значение приватного финального поля?
Стоит сразу сказать, это очень плохая практика. Такое изменение грубо нарушает принципы сокрытия данных, и потенциально ломает инвариантность состояния объекта.
Для этого трюка необходимо прибегнуть к использованию Reflection API.
Сначала получим дескриптор поля – экземпляр класса Field. У объекта метакласса Class<X> интересующего нас класса вызовем метод getDeclaredField(). Просто getField() не сработает, потому что он работает только с публичными полями. Параметром передается строка с именем поля.
Полученного экземпляра Field уже достаточно для доступа к изменяемым приватным полям. Перед обращением требуется сделать его доступным, вызвав setAccessible(true).
Сам доступ осуществляется методами get*() и set*(). Так как Field представляет дескриптор поля класса, без привязки к конкретному экземпляру класса, экземпляр передается параметром в методы доступа. Для статического поля передается null.
Чтобы побороть неизменяемость финального поля, нужно снять его модификатор final. Все модификаторы поля хранятся в поле modifiers дескриптора. То есть, нужно также с помощью рефлекшена сделать доступным и обновить поле уже объекта Field.
Поле modifiers хранит модификаторы в виде битовой маски. Для изменения придется прибегнуть к битовым операторам.
Полный код установки значения 42 в поле myField объекта myObject выглядит так:
Стоит сразу сказать, это очень плохая практика. Такое изменение грубо нарушает принципы сокрытия данных, и потенциально ломает инвариантность состояния объекта.
Для этого трюка необходимо прибегнуть к использованию Reflection API.
Сначала получим дескриптор поля – экземпляр класса Field. У объекта метакласса Class<X> интересующего нас класса вызовем метод getDeclaredField(). Просто getField() не сработает, потому что он работает только с публичными полями. Параметром передается строка с именем поля.
Полученного экземпляра Field уже достаточно для доступа к изменяемым приватным полям. Перед обращением требуется сделать его доступным, вызвав setAccessible(true).
Сам доступ осуществляется методами get*() и set*(). Так как Field представляет дескриптор поля класса, без привязки к конкретному экземпляру класса, экземпляр передается параметром в методы доступа. Для статического поля передается null.
Чтобы побороть неизменяемость финального поля, нужно снять его модификатор final. Все модификаторы поля хранятся в поле modifiers дескриптора. То есть, нужно также с помощью рефлекшена сделать доступным и обновить поле уже объекта Field.
Поле modifiers хранит модификаторы в виде битовой маски. Для изменения придется прибегнуть к битовым операторам.
Полный код установки значения 42 в поле myField объекта myObject выглядит так:
Field field = myObject.class.getDeclaredField( "myField" );
field.setAccessible( true );
Field modifiersField = Field.class.getDeclaredField( "modifiers" );
modifiersField.setAccessible( true );
modifiersField.setInt( field, field.getModifiers() & ~Modifier.FINAL );
field.setInt(myObject, 42);
🔥12👍5❤1
This media is not supported in your browser
VIEW IN TELEGRAM
Cамый простой способ изучить Java — залезть в голову профи
Один из лучших айтишников России учит базе кодинга в Telegram. Даже гуманитарий поймёт, как создавать приложения, сайты, игры и чат-боты.
Достаточно подписаться на «Секреты Java», где каждый день появляются гайды, готовые примеры кода и лучших практик.
И всё это бесплатно — вместо сотен тысяч рублей за курсы. Стартовать в прибыльной профессии с нуля вы сможете гораздо проще!
Теперь обучиться Java может каждый: @java_secrets
Один из лучших айтишников России учит базе кодинга в Telegram. Даже гуманитарий поймёт, как создавать приложения, сайты, игры и чат-боты.
Достаточно подписаться на «Секреты Java», где каждый день появляются гайды, готовые примеры кода и лучших практик.
И всё это бесплатно — вместо сотен тысяч рублей за курсы. Стартовать в прибыльной профессии с нуля вы сможете гораздо проще!
Теперь обучиться Java может каждый: @java_secrets
👍3
Как работают стримы?
Пакет java.util.stream – это средства потоковой обработки данных в функциональном стиле. Они не имеют ничего общего (кроме названия) с потоками ввода-вывода. Типичные применения – конвертация, переупаковка, и агрегация данных.
Три основных понятия Java Stream API – источник данных, промежуточная (intermediate), и терминальная (terminal) операции.
Источником может быть заранее заданный набор данных, или динамический генератор, возможно даже бесконечный. Сам источник никогда не модифицируется последующими операциями.
Промежуточные операции модифицируют стрим. На одном потоке можно вызвать сколько угодно промежуточных операций.
Терминальная операция «потребляет» поток. Она может быть только одна, в конце работы с отдельно взятым стримом. Стримы работают лениво – вся цепочка промежуточных операций не начнет выполняться до вызова терминальной.
Типичный пример использования стримов – map-reduce. Map – промежуточная операция, reduce – терминальная.
Источники и промежуточные операции могут изменять набор характеристик потока, которые влияют на дальнейшую обработку. Операция может иметь свойства – элементы перечисления StreamOpFlag:
• SORTED – можно сравнивать элементы;
• ORDERED – определен порядок обхода;
• DISTINCT – содержит уникальные элементы, без дублей;
• SIZED – имеет определенный размер;
• SHORT_CIRCUIT – операция, которая может приводить к короткому замыканию.
Пакет java.util.stream – это средства потоковой обработки данных в функциональном стиле. Они не имеют ничего общего (кроме названия) с потоками ввода-вывода. Типичные применения – конвертация, переупаковка, и агрегация данных.
Три основных понятия Java Stream API – источник данных, промежуточная (intermediate), и терминальная (terminal) операции.
Источником может быть заранее заданный набор данных, или динамический генератор, возможно даже бесконечный. Сам источник никогда не модифицируется последующими операциями.
Промежуточные операции модифицируют стрим. На одном потоке можно вызвать сколько угодно промежуточных операций.
Терминальная операция «потребляет» поток. Она может быть только одна, в конце работы с отдельно взятым стримом. Стримы работают лениво – вся цепочка промежуточных операций не начнет выполняться до вызова терминальной.
Типичный пример использования стримов – map-reduce. Map – промежуточная операция, reduce – терминальная.
Источники и промежуточные операции могут изменять набор характеристик потока, которые влияют на дальнейшую обработку. Операция может иметь свойства – элементы перечисления StreamOpFlag:
• SORTED – можно сравнивать элементы;
• ORDERED – определен порядок обхода;
• DISTINCT – содержит уникальные элементы, без дублей;
• SIZED – имеет определенный размер;
• SHORT_CIRCUIT – операция, которая может приводить к короткому замыканию.
👍13🔥6
Ждем вас на открытом вебинаре «Введение в Java Unit: тестирование с использованием Junit и Mockito», 28 августа в 20:00 мск,
где мы разберем:
Спикер Роман Вороновский — опытный разработчик и ментор.
Встречаемся в преддверии старта курса «Специализация Java-разработчик».
Все участники вебинара получат специальную цену на обучение!
Реклама. ООО «Отус онлайн-образование», ОГРН 1177746618576, www.otus.ru
Please open Telegram to view this post
VIEW IN TELEGRAM
1👍4❤3🔥2
Как реализовать собственный стрим?
Любой стрим определяется его сплитератором. Spliterator – это специальный разделяемый внутренний итератор.
Есть много способов получить готовый сплитератор или стрим, но чтобы создать полностью свою специфическую логику перебора элементов, придется написать собственный сплитератор.
Поток создается из сплитератора одним из статических методов класса StreamSupport. Вызов его методов осуществляется самим фреймворком. Вкратце его работа выглядит так:
• Элементы перебираются методом tryAdvance, пока он не выдаст false. Через параметр action к элементу применяются последующие операции.
• При применении промежуточных и терминальных операций учитываются характеристики потока, изначально задаваемые методом characteristics.
• Когда обработка стрима распараллеливается, методом trySplit от начала последовательности элементов «откусывается» часть, и возвращается завернутой в новый сплитератор. Текущий продолжает идти по оставшемуся хвосту. В идеале, по возможности эта часть – половина элементов потока. Если разделить уже нельзя, возвращается null.
Любой стрим определяется его сплитератором. Spliterator – это специальный разделяемый внутренний итератор.
Есть много способов получить готовый сплитератор или стрим, но чтобы создать полностью свою специфическую логику перебора элементов, придется написать собственный сплитератор.
Поток создается из сплитератора одним из статических методов класса StreamSupport. Вызов его методов осуществляется самим фреймворком. Вкратце его работа выглядит так:
• Элементы перебираются методом tryAdvance, пока он не выдаст false. Через параметр action к элементу применяются последующие операции.
• При применении промежуточных и терминальных операций учитываются характеристики потока, изначально задаваемые методом characteristics.
• Когда обработка стрима распараллеливается, методом trySplit от начала последовательности элементов «откусывается» часть, и возвращается завернутой в новый сплитератор. Текущий продолжает идти по оставшемуся хвосту. В идеале, по возможности эта часть – половина элементов потока. Если разделить уже нельзя, возвращается null.
👍9🔥4
Курс «Углубленное изучение языка Java» предлагает:
Готовы расширить свои карьерные перспективы? Получите скидку на обучение и доступ к подарочным урокам прямо сейчас
Реклама. ООО «Отус онлайн-образование», ОГРН 1177746618576, www.otus.ru
Please open Telegram to view this post
VIEW IN TELEGRAM
1🔥4👍2
Как работают параллельные стримы?
Основная цель, ради которой в Java 8 был добавлен Stream API – удобство многопоточной обработки.
Обычный стрим будет выполняться параллельно после вызова промежуточной операции parallel(). Некоторые стримы создаются уже многопоточными, например результат вызова Collection#parallelStream(). Для распараллеливания используется единый общий ForkJoinPool.
Внутри реализации потока его сплиттератор оборачивается в AbstractTask, который и отправляется на выполнение в пул. AbstractTask при выполнении считывает estimateSize сплиттератора и текущую степень параллелизма пула. На основе этих данных он принимает решение, распараллелить ли сплиттератор на два методом trySplit().
У удобства такого решения есть обратная сторона. Так как пул единый, нагрузка распределяется на всех пользователей параллельных стримов в программе. Если в одном потоке выполняются долгие блокирующие операции, это может ударить по производительности в совершенно не связанном с ним другом потоке.
Если всё же требуется использовать отдельный пул потоков, сам стрим выполняется как задача этого отдельного пула.
Основная цель, ради которой в Java 8 был добавлен Stream API – удобство многопоточной обработки.
Обычный стрим будет выполняться параллельно после вызова промежуточной операции parallel(). Некоторые стримы создаются уже многопоточными, например результат вызова Collection#parallelStream(). Для распараллеливания используется единый общий ForkJoinPool.
Внутри реализации потока его сплиттератор оборачивается в AbstractTask, который и отправляется на выполнение в пул. AbstractTask при выполнении считывает estimateSize сплиттератора и текущую степень параллелизма пула. На основе этих данных он принимает решение, распараллелить ли сплиттератор на два методом trySplit().
У удобства такого решения есть обратная сторона. Так как пул единый, нагрузка распределяется на всех пользователей параллельных стримов в программе. Если в одном потоке выполняются долгие блокирующие операции, это может ударить по производительности в совершенно не связанном с ним другом потоке.
Если всё же требуется использовать отдельный пул потоков, сам стрим выполняется как задача этого отдельного пула.
👍12🔥4
📚На занятии со старшим разработчиком Андреем Поляковым, вы узнаете: https://vk.cc/czN3Ab
- Что из себя представляет подход Data Streams
- Как принцип инверсии зависимостей (dependency inversion principle, DIP) используется для получения паттерна Iterator
- Как применяется принцип инверсии зависимостей для получения повторно используемых алгоритмов над коллекциями объектов.
- Почему стоит избавляться от циклов при работе с коллекциями
После вебинара «Паттерн Iterator: от применения принципа DIP до Data Streams» вы сможете продолжить обучение на курсе.
Please open Telegram to view this post
VIEW IN TELEGRAM
👍5🔥2
Как инстанцировать экземпляр generic типа?
Внутри класса class Foo<T> на generic параметре T невозможно выполнить никакой оператор: нельзя взять его .class, нельзя применить его в instanceof. Также и вызов на нем оператора new приведет к ошибке.
Причина этих ограничений кроется в стирании типов. Дженерик параметры правильно воспринимать скорее как ограничения типов, чем как конкретные типы. Эти ограничения действуют для более строгих проверок на этапе компиляции. В рантайме же информация о конкретных переданных типах-параметрах стирается. А все эти операторы выполняются именно в рантайме.
Стандартный простой способ действия здесь – кроме значения типа T передавать еще и объект-дескриптор для этого типа, экземпляр класса Class<T>. Объект может быть создан из дескриптора рефлекшеном.
Но существует один хак, способный справиться со стиранием типов. Тип-параметр все-таки остается в одном месте в рантайме. Метод метакласса наследника определившего конкретный тип getGenericSuperclass() возвращает класс, которым параметризован родитель.
Внутри класса class Foo<T> на generic параметре T невозможно выполнить никакой оператор: нельзя взять его .class, нельзя применить его в instanceof. Также и вызов на нем оператора new приведет к ошибке.
Причина этих ограничений кроется в стирании типов. Дженерик параметры правильно воспринимать скорее как ограничения типов, чем как конкретные типы. Эти ограничения действуют для более строгих проверок на этапе компиляции. В рантайме же информация о конкретных переданных типах-параметрах стирается. А все эти операторы выполняются именно в рантайме.
Стандартный простой способ действия здесь – кроме значения типа T передавать еще и объект-дескриптор для этого типа, экземпляр класса Class<T>. Объект может быть создан из дескриптора рефлекшеном.
Но существует один хак, способный справиться со стиранием типов. Тип-параметр все-таки остается в одном месте в рантайме. Метод метакласса наследника определившего конкретный тип getGenericSuperclass() возвращает класс, которым параметризован родитель.
👍9🤔5🔥3