Наш подписчик спрашивает:
Я работаю с Spring Boot, но не могу решить, какой фреймворк лучше выбрать для работы с базой данных: Hibernate, JPA или Spring Data. Все они звучат одинаково и предлагают схожий функционал. В чем разница между ними и какой из них лучше использовать в реальном проекте?
🔹 Какой фреймворк для работы с базой данных вы предпочитаете в Spring Boot?
— Почему вы выбрали именно его?
— Какие фишки или особенности вам помогли выбрать лучшее решение?
— В каких случаях стоит использовать Hibernate, а в каких Spring Data или JPA?
P.S. Если хотите задать вопрос, заполните нашу гугл-форму. Это займет 5 минут.
#междусобойчик
Please open Telegram to view this post
VIEW IN TELEGRAM
❤2🥱2👍1🔥1
🧠 Выбор первого ML-проекта: чеклист против выгорания
Классика плохих решений в ML — выбрать слишком сложный проект: неделя ковыряния в коде, десятки крашей и никакого результата. Хотите дойти до финиша — начните с простого проекта, который реально можно довести до конца.
Мини-чеклист первого проекта:
1. Понятные данные — без «я нашёл датасет в даркнете, но он на суахили».
2. Измеримая метрика — «точность 92%», а не «ну вроде работает».
3. Объяснимый результат — чтобы не-техлид понял, почему модель ругается на спам.
Наш курс «ML для старта в Data Science» — старт от простого к сложному: теория → практика → проверка → проект в портфолио.
👉 Начать свой путь в Data Science
Оплатите курс по ML до 17 августа — курс по Python в подарок.
📅 Бесплатный вебинар с Марией Жаровой — 21 августа: как выбирать проекты, которые доводят до оффера, а не до психотерапевта.
💾 Сохрани, чтобы не потерять, когда будешь готов(а) начать
Классика плохих решений в ML — выбрать слишком сложный проект: неделя ковыряния в коде, десятки крашей и никакого результата. Хотите дойти до финиша — начните с простого проекта, который реально можно довести до конца.
Мини-чеклист первого проекта:
1. Понятные данные — без «я нашёл датасет в даркнете, но он на суахили».
2. Измеримая метрика — «точность 92%», а не «ну вроде работает».
3. Объяснимый результат — чтобы не-техлид понял, почему модель ругается на спам.
Наш курс «ML для старта в Data Science» — старт от простого к сложному: теория → практика → проверка → проект в портфолио.
👉 Начать свой путь в Data Science
Оплатите курс по ML до 17 августа — курс по Python в подарок.
📅 Бесплатный вебинар с Марией Жаровой — 21 августа: как выбирать проекты, которые доводят до оффера, а не до психотерапевта.
💾 Сохрани, чтобы не потерять, когда будешь готов(а) начать
❤1
Please open Telegram to view this post
VIEW IN TELEGRAM
😁13💯5👍1