ИРТТЭК - Институт развития технологий ТЭК
6.35K subscribers
1.16K photos
38 videos
6 files
2.87K links
Институт развития технологий ТЭК изучает общие и частные проблемы энергетики, взаимосвязи различных энергетических отраслей с экономическими и политическими процессами

Для связи: @infoirttek
Почта: [email protected]
Download Telegram
В МГУ определят разрушающие нефть бактерии в почве арктических островов
#наукаИРТТЭК

Ученые МГУ будут определять микроорганизмы, способные разрушать нефтепродукты при низких температурах, в пробах почв с арктических островов Земли Франца-Иосифа, Новой Земли и Колгуева. Пробы были отобраны в ходе рейса Арктического плавучего университета-2024.

"Мы ищем нефтедеструкторов. То есть потенциальные штаммы, которые можно использовать для биоремедиации. Я взяла пробы на два вида исследований: на микробиологию и на химические анализы. Это очень труднодоступные территории, и сейчас идет период, можно сказать, накопления данных по этим островам", - рассказала Татьяна Грачева, старший преподаватель факультета почвоведения кафедры биологии почв МГУ.

Биоремедиация - это комплекс методов очистки вод, грунтов и атмосферы при помощи биологических объектов, это могут быть растения, бактерии, грибы и другие организмы. При этом загрязненные почвы обрабатываются на месте, без перемещения. Арктические микробные сообщества хорошо приспособлены к низким температурам, повышенной минерализации, низкому содержанию питательных веществ в грунте. За счет этого они могут использоваться для очистки почв от углеводородов и тяжелых металлов.

В ходе полевых работ исследователи собрали образцы для определения запасов биомассы в арктических почвах. Ученые будут смотреть микроскопические грибы и бактерии, в частности, актиномицеты, которые способны создавать ветвящиеся нити, похожие на мицелий. Арктические микроорганизмы могут содержать антибактериальные соединения, которые возможно использовать для создания новых антибиотиков. Еще одна задача - поиск психрофильных ферментов для пищевой промышленности и бытовой химии.
Создана технология роста интенсивности добычи нефти и газа
#наукаИРТТЭК

Инженеры в Саратовской области разработали технологию, которая позволит увеличить интенсивность добычи нефти и газа. Она успешно опробована на одном из самых сложных газоконденсатных месторождений в мире.

В Саратовской области разработана технология интенсификации добычи нефти и газа. Технология успешно опробована в Астраханском - одном из самых сложных месторождений в мире, где глубина залегания продуктивного пласта составляет порядка 4 000 м, а также Оренбургском газоконденсатном месторождениях.

Разработка выполнена в инженерно-техническом центре "Фракджет-Волга" в Энгельсе под руководством руководителя центра Олега Воина. В частности, на Оренбургском месторождении с помощью разработанной технологии добились увеличения дебита нефти в восьми скважинах от 1,7 до 3,97 раза.

Как пояснили в министерстве, технология кислотоструйного бурения решает задачу увеличения притока углеводородов в открытом необсаженном стволе скважины. В нем с помощью колтюбинга - установки гибких насосно-компрессорных труб - создают дополнительные боковые стволы. Кислотный состав прокачивается через трубу под большим давлением, разрушая породу как за счет кинетической энергии жидкости, так и химической реакции. Сформированные стволы позволяют вовлечь в добычу ранее не задействованные участки залежей сырья.
Биологи придумали метод очистки почв от нефтесолевого загрязнения
#наукаИРТТЭК

Из-за аварий на нефтепроводах и водоводах на месторождениях происходит загрязнение не только углеводородами, но и высокоминерализованными водами, например, используемыми для гидроразрыва пласта. Это приводит к техногенному засолению почв. Эффективный метод рекультивации разработали биологи Томского государственного университета. Он не требует больших затрат и применения химических веществ.

«Мое исследование было направлено на изучение экологического состояния загрязненных почв после аварий на нефтепроводах и водоводах, — рассказала аспирантка Биологического института ТГУ Мария Носова. — Загрязнение почв нефтью хорошо изучено в Западной Сибири — основном районе добычи нефти в России. Однако влияние высокоминерализованных вод, таких как подтоварные и сеноманские воды, а также буровые растворы, изучено мало, и технологий рекультивации практически не было».

Загрязнение такими водами блокирует способность экосистем к восстановлению. Нефть тоже долго препятствует этому процессу. Однако это органический продукт, со временем он разлагается под воздействием аборигенных микробов-биодеструкторов. Изучение нефтесолевого загрязнения позволило получить необходимые для разработки технических решений результаты. На их основе удалось установить, что соли в почве распределяются неравномерно, аккумулируясь как в верхних горизонтах, так и на глубине от 70 до 130 сантиметров. Это затрудняет понимание происходящих в почве процессов после аварии и может привести к ошибкам в оценке масштабов загрязнения.

Доочистка почвы включает внесение гипсовых удобрений и посадку солеустойчивых растений, таких как подорожник, клевер и овсяница, которые способствуют ее очищению. Опытно-промышленные испытания этой технологии уже проведены, и в дальнейшем технологию планируют апробировать в других природных зонах.
В РФ создали гибкие солнечные батареи
#наукаИРТТЭК

Гибкие солнечные батареи толщиной всего несколько микрон создали ученые Санкт-Петербургского национального исследовательского Академического университета им. Ж. И. Алферова, состоящего в консорциуме центра компетенций НТИ "Фотоника". Разработка позволяет повторно использовать подложку, от которой отделяются солнечные элементы, что значительно снижает стоимость солнечных элементов.

"Метод эпитаксиального отрыва предлагается для производства тонкопленочных солнечных элементов из арсенида галлия. В этом методе тонкая пленка отделяется от подложки с помощью селективного травления защитного слоя. Это позволяет перенести пленку на гибкий носитель и повторно использовать подложку, что значительно снижает производственные затраты. Увеличение удельной мощности приводит к росту эффективности солнечных элементов, открывая новые возможности для их применения в различных сферах", - рассказал сотрудник лаборатории возобновляемых источников энергии СПбАУ РАН им. Ж. И. Алферова Александр Голтаев.

По словам исследователя, отделенные слои обладают высокой гибкостью, высоким КПД и низким весом. Их разработка позволяет улучшить массогабаритные показатели солнечных элементов в несколько раз по сравнению с аналогичными батареями, что необходимо для развития технологий возобновляемых источников энергии.

Также разработанные солнечные элементы можно использовать в комбинации с другими источниками питания, например, для беспилотных летательных аппаратов, электрических автомобилей, мобильных и биосовместимых устройств. Это позволит выполнять дополнительную подзарядку аккумуляторных батарей в процессе работы, что увеличит срок автономного функционирования устройств. Такие возможности гибких солнечных батарей, по словам ученых, будут актуальны для труднодоступных удаленных областей, где возможности зарядки ограничены.
Разработка ученых ПНИПУ улучшит управление энергопотреблением на нефтедобывающих предприятиях
#наукаИРТТЭК

Ученые Пермского Национального Исследовательского Политехнического Университета разработали уникальную программу для анализа энергопотребления на нефтедобывающих предприятиях, которая позволяет эффективно управлять потреблением и распределением электроэнергии.

С помощью разработанной программы можно анализировать электропотребление в различных условиях добычи нефти, проводить моделирование режимов работы ЭТК и оптимизировать распределение энергоресурсов. Она предоставляет возможность контролировать и корректировать технологические параметры, что способствует более рациональному использованию энергоресурсов в процессе добычи нефти.

Эта разработка имеет значительный потенциал для применения на нефтедобывающих предприятиях, где эффективное управление энергопотреблением является важным фактором для повышения конкурентоспособности предприятия и всей отрасли.

Программное обеспечение уже используется в образовательной и научно-исследовательской деятельности Пермского Политеха и НОЦ мирового уровня «Рациональное недропользование», что подчеркивает важность и перспективность этой разработки.
В Перми нашли способ ускорить добычу нефти с повышенной вязкостью
#наукаИРТТЭК

Ученые Пермского национального исследовательского политехнического университета нашли способ ускорить добычу нефти с повышенной вязкостью при помощи распределения температуры призабойного нагревателя. Способ позволяет повысить эффективность работы насоса и уменьшить материальные затраты при разработке месторождений.

По словам исследователей, применяемые сегодня матмодели не позволяют изучить течение нефти через перфорационные отверстия в насосе, которые обеспечивают гидродинамическое соединение пласта со скважиной. Модель, разработанная пермскими учеными, трехмерная и содержит необходимую область с перфорированной трубой. По данным разработчиков, наибольшей скорости нефть достигает вблизи именно этих отверстий около нагревателя и центробежного насоса, а наименьшей вязкости - в центре потока и рядом с устройством. Согласно новой матмодели, необходимая длина нагревателя, которой будет достаточно для стабильной перекачки нефти, - 1 м. При этом требуется поддерживать одинаковую температуру, равную 122 градусам.

Как отметили в ПНИПУ, разработанная модель более точная и эффективная. Она позволит значительно снизить материальные затраты и ограничить чрезмерное потребление ресурсов при разработке месторождений. Статья с результатами работы пермских ученых опубликована в журнале "Вычислительная механика сплошных сред" в июле 2024 года. Исследование выполнено в рамках программы стратегического академического лидерства "Приоритет-2030", обладателем гранта которой в размере 100 млн рублей ПНИПУ стал в 2021 году.
На Сахалине открыли Всероссийский форум "ОстроVа"
#наукаИРТТЭК

Молодёжь на церемонии открытия приветствовал губернатор Сахалинской области Валерий Лимаренко. Он заинтересовал ребят перспективными проектами, которые реализуются в нефтегазовой сфере и туризме, угольной и рыбной промышленности, транспорте и логистике. В этих отраслях островной регион уже конкурирует на международном рынке. Создаются на островах и новые отрасли – водородная энергетика и беспилотная авиация.

– Я рассказал лишь о некоторых проектах, а их у нас гораздо больше. И везде требуются кадры. Молодые, амбициозные, смелые люди. Опережающими темпами у нас строится кампус мирового уровня СахалинТех. Но мы не сидим сложа руки, а уже сейчас запускаем современные лаборатории. Каждый абитуриент теперь получает карьерный план и видит перспективы своего профессионального роста. В какой компании, с какой заработной платой. Такого нет нигде в стране. Мы будем готовить кадры по заказам ключевых компаний региона. Это предприятия, которые ведут добычу нефти и газа на шельфе Сахалина, занимаются новой энергетикой, освоением водных биоресурсов, вопросами экологии и климата, разрабатывают и внедряют цифровые технологии. И это компании с высокооплачиваемыми рабочими местами для нашей талантливой молодёжи. Связывайте свое будущее с Сахалинской областью и создавайте его таким, каким хотите его видеть. Всё в ваших руках! – подчеркнул Валерий Лимаренко.

– Мы разбили направление на треки – авиация, нефть и газ, сервис и туризм, медицина, строительство, молодёжная политика. Ребята будут посещать предприятия, изучать, как всё устроено, и решать реальные задачи. Молодежи будут помогать опытные эксперты, – рассказала руководитель направления «Производство» Марина Костюкова.
Недрагоценный водород. Ученые создали катализатор будущего
#наукаИРТТЭК

Стабильный и эффективный катализатор для получения водорода создали ученые ТПУ совместно с коллегами из Китая. По их словам, новинка в семь раз превосходит по стойкости и стабильности более дорогие аналоги, что может способствовать наращиванию производства водорода из воды не только для химической промышленности, но и для изготовления топлива.

В последнее время водород все чаще рассматривается в качестве энергоносителя, так как он имеет ряд преимуществ по сравнению с ископаемыми топливами. Атомы водорода являются самыми распространенными во Вселенной, и их получение можно отнести к возобновляемым источникам энергии.

В качестве альтернативы существующим драгоценным катализаторам ученые ТПУ и Цзилиньского университета (Китай) разработали простой в получении катализатор электролиза воды на основе карбида молибдена, который, по их словам, превосходит по стойкости существующие аналоги в семь раз.

"Мы разработали структуру, которая представляет собой оксид молибдена на поверхности карбида молибдена, интегрированного в графитовую матрицу с добавлением атомов азота. Синтез нового катализатора простой и энергоэффективный в сравнении с прямыми аналогами, а стабильность он сохраняет в течение 15 дней, тогда как аналогичные катализаторы выходят из строя за 50 часов работы", – объяснила одна из авторов публикации, научный сотрудник лаборатории перспективных материалов энергетической отрасли ТПУ Юлия Васильева.
Ученые СахГУ ведут прорывные исследования прибрежно-морских геосистем
#наукаИРТТЭК

Достижением мирового уровня, по оценке научного сообщества, стала новая методология «Поглощение углекислого газа из атмосферы, накопление, трансформация и долгосрочное захоронение органического углерода на прибрежно-морских водно-болотных угодьях», которая опубликована на сайте Российского реестра углеродных единиц.

Методология разработана на основе результатов исследований ученых Сахалинского государственного университета (СахГУ). Над уникальной разработкой, аналогов которой в России нет, совместно с островным университетом работал Институт глобального климата и экологии имени академика Ю. А. Израэля (Москва).

Прибрежно-морские водно-болотные угодья (ПМВБУ) — это антропогенно модифицированные геоморфолитосистемы на основе природоподобного подхода с целью повышения их способностей поглощать углерод из атмосферы, трансформировать в органоминеральный материал и долгосрочно удерживать (хранить) углерод в таком состоянии. После его верификации можно будет производить эмиссию углеродных единиц для продажи на рынке и получения дохода для покрытия расходов на антропогенную деятельность. Покупателям углеродных единиц они нужны, чтобы компенсировать свой углеродный след, получить для своей продукции статус «зеленая», следовательно, иметь большее конкурентное преимущество.

Исследования островных ученых позволили определить, что антропогенный вклад ПМВБУ Сахалинской области, по предварительным расчетам, на первом этапе может составить 0,8–1 млн тонн углерода в эквиваленте CO2 в год. Существенная часть поступающего с поверхностными водами углерода осаждается в окраинных зонах океана и аккумулируется там. Природоподобным способом можно его улавливать и удерживать (хранить). Тем самым открывается возможность увеличить вклад климатических проектов по направлению «голубого углерода» для выравнивания углеродного баланса не только Сахалинской области, но и всего Дальневосточного федерального округа.
Самый экологичный метод получения бионефти из водорослей определили российские ученые
#наукаИРТТЭК

Лучший метод получения биотоплива из морских водорослей впервые определили ученые ПНИПУ и БФУ. Природоподобная технология гидротермального ожижения оказалась самым экологичным и безопасным среди распространенных способов получения растительной бионефти. Побочные продукты реакции могут применяться в энергетике, строительстве и борьбе с нефтеразливами.  

Водоросли выбрасывает на берега Балтийского моря после штормов. Из-за глобального потепления и деятельности человека они разрастаются в огромных масштабах, и разложение большого количества биомассы приводит к отравлению близлежащих вод и образованию парниковых газов. При уборке побережья водоросли обычно увозятся на свалки.

Руководитель проекта, научный сотрудник Высшей школы живых систем БФУ, кандидат технических наук Юлия Владимировна Куликова поделилась с корреспондентом «Научной России» деталями применявшейся учеными технологии гидротермального ожижения.

«Этот метод воспроизводит процессы синтеза нефти в земной коре. Доказано, что в природе нефть образовывалась в породах, находящихся в водной фазе. Отмершие организмы — животные и растения — осаждались на дно водоемов, постепенно образуя сапропель и покрываясь другими породами. В дальнейшем под воздействием давления и воды из этих остатков синтезировалась нефть. Разумеется, давление и температура в природных условиях были несколько ниже, чем у нас в реакторе, поэтому этот процесс длился несколько миллионов лет. У нас эта реакция протекает в течение получаса, но сам механизм остается точно таким же», — объяснила Ю.В. Куликова.