چه کار کنیم یادگیری ریاضی برای ما جذاب تر شود؟!
تجربه های شخصی خود را به نشانی
👇👇👇👇👇👇
@meisami_mah
بفرستید تا با دیگران به اشتراک بگذاریم.
@harmoniclib
تجربه های شخصی خود را به نشانی
👇👇👇👇👇👇
@meisami_mah
بفرستید تا با دیگران به اشتراک بگذاریم.
@harmoniclib
اخبار و کتاب های ریاضی pinned «چه کار کنیم یادگیری ریاضی برای ما جذاب تر شود؟! تجربه های شخصی خود را به نشانی 👇👇👇👇👇👇 @meisami_mah بفرستید تا با دیگران به اشتراک بگذاریم. @harmoniclib»
اخبار و کتاب های ریاضی
چه کار کنیم یادگیری ریاضی برای ما جذاب تر شود؟! تجربه های شخصی خود را به نشانی 👇👇👇👇👇👇 @meisami_mah بفرستید تا با دیگران به اشتراک بگذاریم. @harmoniclib
جواب ارسالی
با سلام و ادای احترام
سئوال شما مثل اینه که بپرسیم چکار کنیم تا از شنا کردن لذت ببریم؟؟؟
جوابش اینه :
هیچی؛ کافیه تلاش کنیم شنا یاد بگیریم و بپریم توی آب
همین...
@harmoniclib
با سلام و ادای احترام
سئوال شما مثل اینه که بپرسیم چکار کنیم تا از شنا کردن لذت ببریم؟؟؟
جوابش اینه :
هیچی؛ کافیه تلاش کنیم شنا یاد بگیریم و بپریم توی آب
همین...
@harmoniclib
اخبار و کتاب های ریاضی
💥سوال انگیزشی ۳۸: در این ویدیو چه مطلب ریاضی بیان می شود؟! @harmoniclib جواب های خود را به آی دی @meisami_mah ارسال نمایید.
جواب ارسالی
در اینجا ابتدا یک دایره رسم میکنیم سپس بک نقطه در محیط آن را مرکز قرار می دهیم و دایره ای(همنهشت) میکشیم تا دایره قبلی را در ۲ نقطه قطع کند سپس با آن ۲ نقطه همین کار را تکرار میکنیم . سپس از ۲ نقطه اشتراک ۲ دایره جدید خطی به هم وصل میکنیم تا عمود منصف خط موصل ۲ نقطه اشتراک قبلی شود و در آخر هم جهت اطمینان و محکم کاری یکی از نقاط اشتراک دایره ثانویه را شعاع قرار داده و دایره می کشیم تا از ۲ نقطه اشتراک اولیه بگذرند
سرانجام ۳ خط مماس بر ۳ نقطه محیط شکل رسم می کنیم تا بر دایره ها مماس باشند. حال ما یک مثلث متساوی الاضلاع دقیق داریم.
(نکته:شعاع همه دایره ها مساوی و برابر r هست)
فکر کنم این مطلب برای هندسه کلاس دوم راهنمایی باشه
@harmoniclib
در اینجا ابتدا یک دایره رسم میکنیم سپس بک نقطه در محیط آن را مرکز قرار می دهیم و دایره ای(همنهشت) میکشیم تا دایره قبلی را در ۲ نقطه قطع کند سپس با آن ۲ نقطه همین کار را تکرار میکنیم . سپس از ۲ نقطه اشتراک ۲ دایره جدید خطی به هم وصل میکنیم تا عمود منصف خط موصل ۲ نقطه اشتراک قبلی شود و در آخر هم جهت اطمینان و محکم کاری یکی از نقاط اشتراک دایره ثانویه را شعاع قرار داده و دایره می کشیم تا از ۲ نقطه اشتراک اولیه بگذرند
سرانجام ۳ خط مماس بر ۳ نقطه محیط شکل رسم می کنیم تا بر دایره ها مماس باشند. حال ما یک مثلث متساوی الاضلاع دقیق داریم.
(نکته:شعاع همه دایره ها مساوی و برابر r هست)
فکر کنم این مطلب برای هندسه کلاس دوم راهنمایی باشه
@harmoniclib
اخبار و کتاب های ریاضی
چه کار کنیم یادگیری ریاضی برای ما جذاب تر شود؟! تجربه های شخصی خود را به نشانی 👇👇👇👇👇👇 @meisami_mah بفرستید تا با دیگران به اشتراک بگذاریم. @harmoniclib
جواب ارسالی
دانشجویان چه کنند تا آموزش مجازی برایشان جذاب شود؟
این پرسشی بود که یکی از دانشجویان حاضر در یک جلسه خودمانی -که به مناسبت روز دانشجو برگزار شده بود- از من پرسید و من احساس کردم خطری بالقوه در این پرسش وجود دارد؛ خطری که ممکن است ناشی از نوعی عقبنشینی فرهنگی برای احقاق حق باشد.
میدانم لازم است با ذکر یک مثال، مطلب بند قبل را بیشتر توضیح دهم. خواه ناخواه به دلیل آن که معلم هستم عادت کردهام برای روشنسازی هر گزارهای مثالی بیاورم:
در محوطه جلوی دانشکده ما در دانشگاه فردوسی مشهد، باغچهای وجود دارد که گلهای رنگارنگ و متنوعی در حاشیه آن کاشته شده است. باغبان دانشکده وسیلهای را در وسط باغچه قرار میدهد که به یک شیر آب وصل میشود و چمنها و گلها را آبیاری میکند. این وسیلهٔ غیرهوشمند -به شکلی دایرهای و به طور کاملاً یکنواخت- آب را به اطراف خود میپاشد و اصلاً برایش مهم نیست که برخی از گلها -بینصیب از آبیاری- تشنه میمانند و گاه پژمرده میشوند. گلها ریشه در خاک دارند و امکان تغییر مکان برایشان وجود ندارد. در حقیقت گلها به هیچ وجه توانایی برطرف کردن این مشکل را ندارند.
عجیب نیست اگر روزی بشنوید که یکی از این گلها در ضمیر ناخودآگاه خود، خویشتن را دلیل محروم شدن از آبیاری بداند؟
دانشجویان من گلهای باغچه هستیام در قلمروی دانایی هستند. من باید باغبان این باغ باشم و هر روز در پی آن باشم که به شیوهای هوشمندانه ابزارهایی نوین را در مکانهای مختلف تعبیه کنم تا آبیاری به درستی انجام شود. اگر آموزش به درستی انجام نمیشود و جذاب نیست، گلهای قلمروی دانایی قابلیت برطرف کردن این مشکل را ندارند.
ما باید هر روز آموزش مجازی را به خلعتی نو بیاراییم و متوجه این حقیقت باشیم که گلها در حال پژمرده شدن هستند.
این عقبنشینی فرهنگی در احقاق حق، مدتی است که در زمینههای مختلف پدیدار شده است. اقتصاد دچار تورم شده است و دخل خانوادهها از آب اقتصاد بیبهره مانده است اما مردم به جای آن که از باغبان بخواهند مسیر آبیاری را از شکمهای گنده مرفهان به سمت گلوهای تشنه محرومان تغییر دهد، مدام از یکدیگر میپرسند که ما برای برطرف کردن مشکل تورم چه باید بکنیم.
پیکان دادخواهی باید متوجه میراب باشد نه گلها و غنچهها.
دانشجویان گلم! شما لازم نیست برای جذاب شدن آموزش مجازی کاری بکنید. این طبیعتاً وظیفه من است. آنچه شما باید انجام دهید این است که میزبان علفهای هرز نباشید و از باغبان بخواهید مسیر آبیاری را هموار سازد تا رشد کنید.
هر چه هست از قامت ناساز بیاندام ماست
ورنه تشریف تو بر بالای کس کوتاه نیست
۲۲ آذرماه ۹۹
مجید میرزاوزیری
@harmoniclib
دانشجویان چه کنند تا آموزش مجازی برایشان جذاب شود؟
این پرسشی بود که یکی از دانشجویان حاضر در یک جلسه خودمانی -که به مناسبت روز دانشجو برگزار شده بود- از من پرسید و من احساس کردم خطری بالقوه در این پرسش وجود دارد؛ خطری که ممکن است ناشی از نوعی عقبنشینی فرهنگی برای احقاق حق باشد.
میدانم لازم است با ذکر یک مثال، مطلب بند قبل را بیشتر توضیح دهم. خواه ناخواه به دلیل آن که معلم هستم عادت کردهام برای روشنسازی هر گزارهای مثالی بیاورم:
در محوطه جلوی دانشکده ما در دانشگاه فردوسی مشهد، باغچهای وجود دارد که گلهای رنگارنگ و متنوعی در حاشیه آن کاشته شده است. باغبان دانشکده وسیلهای را در وسط باغچه قرار میدهد که به یک شیر آب وصل میشود و چمنها و گلها را آبیاری میکند. این وسیلهٔ غیرهوشمند -به شکلی دایرهای و به طور کاملاً یکنواخت- آب را به اطراف خود میپاشد و اصلاً برایش مهم نیست که برخی از گلها -بینصیب از آبیاری- تشنه میمانند و گاه پژمرده میشوند. گلها ریشه در خاک دارند و امکان تغییر مکان برایشان وجود ندارد. در حقیقت گلها به هیچ وجه توانایی برطرف کردن این مشکل را ندارند.
عجیب نیست اگر روزی بشنوید که یکی از این گلها در ضمیر ناخودآگاه خود، خویشتن را دلیل محروم شدن از آبیاری بداند؟
دانشجویان من گلهای باغچه هستیام در قلمروی دانایی هستند. من باید باغبان این باغ باشم و هر روز در پی آن باشم که به شیوهای هوشمندانه ابزارهایی نوین را در مکانهای مختلف تعبیه کنم تا آبیاری به درستی انجام شود. اگر آموزش به درستی انجام نمیشود و جذاب نیست، گلهای قلمروی دانایی قابلیت برطرف کردن این مشکل را ندارند.
ما باید هر روز آموزش مجازی را به خلعتی نو بیاراییم و متوجه این حقیقت باشیم که گلها در حال پژمرده شدن هستند.
این عقبنشینی فرهنگی در احقاق حق، مدتی است که در زمینههای مختلف پدیدار شده است. اقتصاد دچار تورم شده است و دخل خانوادهها از آب اقتصاد بیبهره مانده است اما مردم به جای آن که از باغبان بخواهند مسیر آبیاری را از شکمهای گنده مرفهان به سمت گلوهای تشنه محرومان تغییر دهد، مدام از یکدیگر میپرسند که ما برای برطرف کردن مشکل تورم چه باید بکنیم.
پیکان دادخواهی باید متوجه میراب باشد نه گلها و غنچهها.
دانشجویان گلم! شما لازم نیست برای جذاب شدن آموزش مجازی کاری بکنید. این طبیعتاً وظیفه من است. آنچه شما باید انجام دهید این است که میزبان علفهای هرز نباشید و از باغبان بخواهید مسیر آبیاری را هموار سازد تا رشد کنید.
هر چه هست از قامت ناساز بیاندام ماست
ورنه تشریف تو بر بالای کس کوتاه نیست
۲۲ آذرماه ۹۹
مجید میرزاوزیری
@harmoniclib
#افق_رویداد
با این شاهراه جدید در منظومه شمسی سریعتر تر سفر خواهیم کرد
دانشمندان "دانشگاه کالیفرنیا سن دیگو"(University of California, San Diego) شبکه شاهراه جدیدی (superhighway network) را کشف کردهاند که میتوان از طریق آن بسیار سریعتر از گذشته در منظومه شمسی حرکت کرد. علاوه بر این، از آن میتوان برای ارسال نسبتاً سریع فضاپیما به نقاط دور دست سامانه سیارهای استفاده کرد.
گرچه قدمت پویایی منظومه شمسی صدها هزار یا میلیونها است اما این "اتوبان آسمانی" یا "شاهراه آسمانی"(celestial highway) تازه کشف شده چندین دهه است که وجود دارد و فعالیت میکند.
در این مطالعه دانشمندان ساختار پویایی این مسیرها را مشاهده کردند و یک سری قوس متصل را در داخل منیفلدهای فضایی که از کمربند سیارکی تا اورانوس و فراتر از آن گسترش مییابد، ایجاد کردند.
خمینه یا منیفلد(Manifold) فضای توپولوژی است که در هر نقطه به صورت موضعی شبیه فضای اقلیدسی است. به طور دقیق تر، هر نقطه از فضای n-بعدی دارای همسایگی هومئومورف با فضای اقلیدسی n بعدی است.
برجستهترین سازههای قوسی با مشتری و نیروهای گرانشی قوی که اعمال میکند، مرتبط هستند. این منیفلدها، جمعیت دنباله دارهای خانواده مشتری(دنباله دارهایی که دوره مداری آنها ۲۰ سال است) و اجرام کوچک منظومه شمسی که با نام "سانتور"(Centaurs) شناخته میشوند و در مقیاس زمانی بی سابقهای حرکت میکنند را کنترل میکنند. برخی از این اجرام در نهایت با مشتری برخورد می کنند و یا از منظومه شمسی خارج می شوند. سانتورها اجرام آسمانی هستند که بین مشتری و نپتون گردِ خورشید میگردند. مدارشان ناپایدار است و ممکن است مدار سیارات بیرونی را قطع کند یا نکند.
دانشمندان با جمع آوری دادههای عددی در مورد میلیونها مدار در منظومه شمسی، این ساختار را حل کردند و سپس نحوه قرار گرفتن این مدارها در منیفلدهای فضایی شناخته شده را محاسبه کردند.
با این حال، مطالعات بیشتری برای تعیین چگونگی استفاده از آنها توسط فضاپیماها یا رفتار چنین منیفلدها در مجاورت زمین، کنترل برخورد سیارکها و شهاب سنگها و افزایش جمعیت اشیا مصنوعی ساخته شده توسط انسان در سیستم زمین-ماه مورد نیاز است.
ترجمه ایسنا و به نقل از تک اکسپلوریست
@harmoniclib
با این شاهراه جدید در منظومه شمسی سریعتر تر سفر خواهیم کرد
دانشمندان "دانشگاه کالیفرنیا سن دیگو"(University of California, San Diego) شبکه شاهراه جدیدی (superhighway network) را کشف کردهاند که میتوان از طریق آن بسیار سریعتر از گذشته در منظومه شمسی حرکت کرد. علاوه بر این، از آن میتوان برای ارسال نسبتاً سریع فضاپیما به نقاط دور دست سامانه سیارهای استفاده کرد.
گرچه قدمت پویایی منظومه شمسی صدها هزار یا میلیونها است اما این "اتوبان آسمانی" یا "شاهراه آسمانی"(celestial highway) تازه کشف شده چندین دهه است که وجود دارد و فعالیت میکند.
در این مطالعه دانشمندان ساختار پویایی این مسیرها را مشاهده کردند و یک سری قوس متصل را در داخل منیفلدهای فضایی که از کمربند سیارکی تا اورانوس و فراتر از آن گسترش مییابد، ایجاد کردند.
خمینه یا منیفلد(Manifold) فضای توپولوژی است که در هر نقطه به صورت موضعی شبیه فضای اقلیدسی است. به طور دقیق تر، هر نقطه از فضای n-بعدی دارای همسایگی هومئومورف با فضای اقلیدسی n بعدی است.
برجستهترین سازههای قوسی با مشتری و نیروهای گرانشی قوی که اعمال میکند، مرتبط هستند. این منیفلدها، جمعیت دنباله دارهای خانواده مشتری(دنباله دارهایی که دوره مداری آنها ۲۰ سال است) و اجرام کوچک منظومه شمسی که با نام "سانتور"(Centaurs) شناخته میشوند و در مقیاس زمانی بی سابقهای حرکت میکنند را کنترل میکنند. برخی از این اجرام در نهایت با مشتری برخورد می کنند و یا از منظومه شمسی خارج می شوند. سانتورها اجرام آسمانی هستند که بین مشتری و نپتون گردِ خورشید میگردند. مدارشان ناپایدار است و ممکن است مدار سیارات بیرونی را قطع کند یا نکند.
دانشمندان با جمع آوری دادههای عددی در مورد میلیونها مدار در منظومه شمسی، این ساختار را حل کردند و سپس نحوه قرار گرفتن این مدارها در منیفلدهای فضایی شناخته شده را محاسبه کردند.
با این حال، مطالعات بیشتری برای تعیین چگونگی استفاده از آنها توسط فضاپیماها یا رفتار چنین منیفلدها در مجاورت زمین، کنترل برخورد سیارکها و شهاب سنگها و افزایش جمعیت اشیا مصنوعی ساخته شده توسط انسان در سیستم زمین-ماه مورد نیاز است.
ترجمه ایسنا و به نقل از تک اکسپلوریست
@harmoniclib
به نظر شما بد بودن کتاب های ریاضی دبیرستان در عدم تمایل دانش آموزان برای ورود به رشته ریاضی در دانشگاه تاثیرگذار است؟!
Anonymous Poll
75%
بله
25%
خیر
اخبار و کتاب های ریاضی pinned «به نظر شما بد بودن کتاب های ریاضی دبیرستان در عدم تمایل دانش آموزان برای ورود به رشته ریاضی در دانشگاه تاثیرگذار است؟!»
Forwarded from اخبار و کتاب های ریاضی
همه چیز در مورد ریاضیات
@harmoniclib
جدیدترین اخبار در حوزه ریاضی
جدیدترین و مهم ترین کتاب های ریاضی
زیباترین مسائل و معماهای ریاضی
کاربرد ریاضیات در علوم و فنون مهندسی
همه و همه
در کانال اخبار و کتاب های ریاضی
@harmoniclib
https://t.iss.one/harmoniclib
لینک کانال اخبار و کتابهای ریاضی را نشر دهید.
@harmoniclib
جدیدترین اخبار در حوزه ریاضی
جدیدترین و مهم ترین کتاب های ریاضی
زیباترین مسائل و معماهای ریاضی
کاربرد ریاضیات در علوم و فنون مهندسی
همه و همه
در کانال اخبار و کتاب های ریاضی
@harmoniclib
https://t.iss.one/harmoniclib
لینک کانال اخبار و کتابهای ریاضی را نشر دهید.
اخبار و کتاب های ریاضی
همه چیز در مورد ریاضیات @harmoniclib جدیدترین اخبار در حوزه ریاضی جدیدترین و مهم ترین کتاب های ریاضی زیباترین مسائل و معماهای ریاضی کاربرد ریاضیات در علوم و فنون مهندسی همه و همه در کانال اخبار و کتاب های ریاضی @harmoniclib https://t.iss.one/harmoniclib لینک کانال…
بنر تبلیغاتی کانال جهت انتشار در گروهها و کانالها
در دومین دورهی کنفرانس ملی انفورماتیک ایران، کارگاههای متعددی برگزار خواهد شد که شرکت در آنها برای عموم ثبتنام کنندگان آزاد است.
تاریخ کنفرانس: ۳ و ۴ دیماه
تاریخ کارگاهها: ۵-۱۰ دیماه
در این کنفراس دکتر امیر جعفری، کاربردهایی از جبر خطی در نظریه تسهیم راز و پیچیدگی محاسبه ارائه خواهد کرد.
زمان کارگاه دکتر جعفری: ۷ دیماه ۱۴:۰۰-۱۷:۳۰
چکیده: این یک کارگاه کوتاه در مورد کاربردهای روشهای جبرخطی در نظریه تسهیم راز و پیچیدگی محاسبه است. به طور خاص، در مورد توابع بولی یکنوا و هم ارزی آنها با طرحهای تسهیم راز خطی صحبت خواهد شد. روشهایی برای محاسبه کرانهای پایین یک مدل محاسبه به نام MSP برای محاسبه توابع بولی یکنوا ارائه خواهد شد؛ که معادلا منجر به ارائه کرانهای پایین برای نسبت اطلاعاتی طرحهای تسهیم راز خطی که یک ساختار دسترسی را ارضا میکنند میشود. سعی خواهد شد بعضی از نتایج رازباروف، گال، ویگدرسون، کارچمر و بایمل در این مورد مرور شود.
در مورد سخنران: دکتر امیرجعفری عضوهیأت علمی دانشکده علوم ریاضی دانشگاه شریف است. او مدرک کارشناسی خود را از همان جا در سال ۱۳۷۴ اخذ کرده و برای ادامه تحصیل عازم آمریکا شده است. مدرک کارشناسی ارشد ریاضیات را در سال ۱۳۷۶ از دانشگاه جانزهاپکینز و مدرک کارشناسی ارشد در علوم کامپیوتر را را از دانشگاه براون در سال۱۳۸۰ اخذ کرده است. او مدرک دکترای خود را نیز از دانشگاه براون در سال ۱۳۸۱ زیر نظر گنچارف در هندسه جبری اخذ کرده است. او عضو دانشگاه های نورثوسترن، مرکز تحقیقات عالی پرینستون، دوک و دانشگاه سن دیگو بوده است. همچنین در بین سالهای ۱۳۸۹-۱۳۹۴ او مدرس دوره های تابستانی در دانشگاه استنفورد بوده است. از سال ۱۳۸۸ او به دانشکده علوم ریاضی دانشگاه شریف ملحق شده است.
سایر کارگاهها در لینک زیر:
https://cs.ipm.ac.ir/nic/1399/Workshops.aspx
@harmoniclib
تاریخ کنفرانس: ۳ و ۴ دیماه
تاریخ کارگاهها: ۵-۱۰ دیماه
در این کنفراس دکتر امیر جعفری، کاربردهایی از جبر خطی در نظریه تسهیم راز و پیچیدگی محاسبه ارائه خواهد کرد.
زمان کارگاه دکتر جعفری: ۷ دیماه ۱۴:۰۰-۱۷:۳۰
چکیده: این یک کارگاه کوتاه در مورد کاربردهای روشهای جبرخطی در نظریه تسهیم راز و پیچیدگی محاسبه است. به طور خاص، در مورد توابع بولی یکنوا و هم ارزی آنها با طرحهای تسهیم راز خطی صحبت خواهد شد. روشهایی برای محاسبه کرانهای پایین یک مدل محاسبه به نام MSP برای محاسبه توابع بولی یکنوا ارائه خواهد شد؛ که معادلا منجر به ارائه کرانهای پایین برای نسبت اطلاعاتی طرحهای تسهیم راز خطی که یک ساختار دسترسی را ارضا میکنند میشود. سعی خواهد شد بعضی از نتایج رازباروف، گال، ویگدرسون، کارچمر و بایمل در این مورد مرور شود.
در مورد سخنران: دکتر امیرجعفری عضوهیأت علمی دانشکده علوم ریاضی دانشگاه شریف است. او مدرک کارشناسی خود را از همان جا در سال ۱۳۷۴ اخذ کرده و برای ادامه تحصیل عازم آمریکا شده است. مدرک کارشناسی ارشد ریاضیات را در سال ۱۳۷۶ از دانشگاه جانزهاپکینز و مدرک کارشناسی ارشد در علوم کامپیوتر را را از دانشگاه براون در سال۱۳۸۰ اخذ کرده است. او مدرک دکترای خود را نیز از دانشگاه براون در سال ۱۳۸۱ زیر نظر گنچارف در هندسه جبری اخذ کرده است. او عضو دانشگاه های نورثوسترن، مرکز تحقیقات عالی پرینستون، دوک و دانشگاه سن دیگو بوده است. همچنین در بین سالهای ۱۳۸۹-۱۳۹۴ او مدرس دوره های تابستانی در دانشگاه استنفورد بوده است. از سال ۱۳۸۸ او به دانشکده علوم ریاضی دانشگاه شریف ملحق شده است.
سایر کارگاهها در لینک زیر:
https://cs.ipm.ac.ir/nic/1399/Workshops.aspx
@harmoniclib
💥سوال انگیزشی ۴۰ :
آیا می توانید اعداد دیگری معرفی کنید که ویژگی اعداد این تصویر را داشته باشند؟!
@harmoniclib
جواب های خود را به آی دی
👇👇👇👇👇👇
@meisami_mah
ارسال نمایید.
آیا می توانید اعداد دیگری معرفی کنید که ویژگی اعداد این تصویر را داشته باشند؟!
@harmoniclib
جواب های خود را به آی دی
👇👇👇👇👇👇
@meisami_mah
ارسال نمایید.