Python3
200 subscribers
100 photos
6 videos
26 files
518 links
🎓 آموزش و پروژه‌های Python
آموزش‌های کاربردی و پروژه‌های عملی Python برای همه سطوح. 🚀
Download Telegram
🌟 بهینه‌سازی کد با استفاده از memoization 🌟

🔍 توضیحات:

روش memoization یک تکنیک بهینه‌سازی است که با ذخیره‌سازی نتایج محاسبات تکراری، باعث افزایش سرعت اجرای برنامه می‌شود. این روش به خصوص در مواردی که محاسبات سنگین و تکراری داریم، بسیار مفید است. در اینجا یک کد نمونه به زبان پایتون آورده شده که از این تکنیک استفاده می‌کند:

def memoize(f):
memo = {}
def helper(x):
if x not in memo:
memo[x] = f(x)
return memo[x]
return helper

@memoize
def some_expensive_computation(x):
# اینجا محاسبات پرهزینه‌ای که نیاز به بهینه‌سازی دارد قرار می‌گیرد
pass

🔧 توضیح کد:

1. 🌐 تابع memoize: این تابع یک دیکشنری به نام memo ایجاد می‌کند که نتایج محاسبات را ذخیره می‌کند.
2. 💡 تابع helper: این تابع چک می‌کند که آیا نتیجه محاسبه قبلاً در memo ذخیره شده است یا نه. اگر ذخیره نشده باشد، محاسبه انجام شده و نتیجه آن ذخیره می‌شود.
3. 🚀 استفاده از memoization: با استفاده از دکوراتور @memoize، تابع some_expensive_computation بهینه‌سازی می‌شود و نتایج محاسبات تکراری ذخیره و بازیابی می‌شوند.


🔗 [اینم کانال ماست]

#بهینه_سازی #پایتون #Memoization #برنامه_نویسی #توسعه_دهنده
👍4