مرحله 2: استفاده از درخت قرمز-سیاه
در اینجا یک مثال ساده از استفاده از درخت قرمز-سیاه را نشان میدهیم:
در این مثال، تعدادی کلید به درخت قرمز-سیاه اضافه میکنیم و سپس آن را به صورت ترتیبدار چاپ میکنیم. 🌟
[برای یاد گرفتن الگوریتم های بیشتر کانال مارو دنبال کنید]
#برنامهنویسی #پایتون #الگوریتم #دادهساختار #درخت_قرمز_سیاه #آموزش #کدنویسی #Python #RedBlackTree #Coding #DataStructures #Algorithms
در اینجا یک مثال ساده از استفاده از درخت قرمز-سیاه را نشان میدهیم:
if __name__ == "__main__":
bst = RedBlackTree()
# درج چند کلید در درخت
bst.insert(55)
bst.insert(40)
bst.insert(65)
bst.insert(60)
bst.insert(75)
bst.insert(57)
# چاپ درخت
bst.print_tree()
در این مثال، تعدادی کلید به درخت قرمز-سیاه اضافه میکنیم و سپس آن را به صورت ترتیبدار چاپ میکنیم. 🌟
[برای یاد گرفتن الگوریتم های بیشتر کانال مارو دنبال کنید]
#برنامهنویسی #پایتون #الگوریتم #دادهساختار #درخت_قرمز_سیاه #آموزش #کدنویسی #Python #RedBlackTree #Coding #DataStructures #Algorithms
🍓1
🌟 TechSavvy Algorithms: The Ultimate Recommendation System! 🌟
👨💻 Introducing the Most Advanced Collaborative Filtering System 👩💻
In today's world, recommendation systems are an essential part of many online services. From online stores to streaming services for movies and music, these systems are used to enhance user experience and boost engagement.
💡 TechSavvy Algorithms is an advanced recommendation system based on Collaborative Filtering, utilizing cutting-edge techniques and optimization algorithms to provide accurate and personalized recommendations.
📚 Features and Applications of TechSavvy Algorithms:
1. Advanced Collaborative Filtering Techniques:
- Leverage user data to identify common patterns and deliver precise suggestions.
2. Efficient Data Processing:
- Prepare and normalize data to maximize recommendation accuracy.
3. Scalable SVD Model Training:
- Employ Singular Value Decomposition (SVD) to reduce data dimensions and extract key features.
4. Personalized Recommendations:
- Suggest new movies, products, or content based on users' interests and preferences.
📈 How You Can Utilize This Source Code:
- Online Stores: Recommend related products based on previous purchases.
- Streaming Services: Suggest new movies and music to users.
- Social Networks: Recommend new friends or content based on user interests.
🚀 TechSavvy Algorithms helps you improve user experience with precise and personalized suggestions, giving you a competitive edge. By incorporating this advanced algorithm into your projects, you can elevate your offerings and exceed user expectations.
📚 Get and Use This Source Code:
We're offering this powerful and valuable source code for free. Download it now and start enhancing your projects!
👉👉click👈👈
#Programming #Algorithms #RecommendationSystem #TechSavvy #Python #MachineLearning #OpenSource #FreeCode
👨💻 Introducing the Most Advanced Collaborative Filtering System 👩💻
In today's world, recommendation systems are an essential part of many online services. From online stores to streaming services for movies and music, these systems are used to enhance user experience and boost engagement.
💡 TechSavvy Algorithms is an advanced recommendation system based on Collaborative Filtering, utilizing cutting-edge techniques and optimization algorithms to provide accurate and personalized recommendations.
📚 Features and Applications of TechSavvy Algorithms:
1. Advanced Collaborative Filtering Techniques:
- Leverage user data to identify common patterns and deliver precise suggestions.
2. Efficient Data Processing:
- Prepare and normalize data to maximize recommendation accuracy.
3. Scalable SVD Model Training:
- Employ Singular Value Decomposition (SVD) to reduce data dimensions and extract key features.
4. Personalized Recommendations:
- Suggest new movies, products, or content based on users' interests and preferences.
📈 How You Can Utilize This Source Code:
- Online Stores: Recommend related products based on previous purchases.
- Streaming Services: Suggest new movies and music to users.
- Social Networks: Recommend new friends or content based on user interests.
🚀 TechSavvy Algorithms helps you improve user experience with precise and personalized suggestions, giving you a competitive edge. By incorporating this advanced algorithm into your projects, you can elevate your offerings and exceed user expectations.
📚 Get and Use This Source Code:
We're offering this powerful and valuable source code for free. Download it now and start enhancing your projects!
👉👉click👈👈
#Programming #Algorithms #RecommendationSystem #TechSavvy #Python #MachineLearning #OpenSource #FreeCode
ادامه کد ☝️
استفاده از الگوریتمها در هوش مصنوعی 🤖
الگوریتمهای محاسباتی پیشرفته یکی از اجزای اصلی هوش مصنوعی هستند. به عنوان مثال، الگوریتمهای یادگیری ماشین برای بهینهسازی و یادگیری از دادهها استفاده میشوند. یکی از الگوریتمهای پایهای در این زمینه، الگوریتم نزول گرادیان (Gradient Descent) است که برای به حداقل رساندن تابع هزینه در مسائل یادگیری ماشین استفاده میشود.
بهینهسازی الگوریتمها برای کارایی بالا 🔄
برای کاربردهای سنگین مانند شبیهسازیهای پیچیده و یا الگوریتمهای یادگیری ماشین، بهینهسازی کد برای کارایی بالا اهمیت زیادی دارد. از جمله روشهای بهینهسازی میتوان به استفاده از کتابخانههای محاسباتی بهینه مانند NumPy، اجرای موازی (parallel processing)، و بهینهسازی حافظه اشاره کرد.
(🚩اینجا کلیک کن تا بیشتر یاد بگیری🚩)
#Algorithms #Computational_Programming #MachineLearning #AI #Python #برنامهنویسی #الگوریتم #شبیهسازی #محاسبات_پیشرفته #هوش_مصنوعی
# تعریف ذرات و نیروها
particle = Particle(0.0, 0.0, 1.0)
force = 10.0
time = 1.0
# اعمال نیرو و شبیهسازی حرکت ذره
for i in range(10):
particle.apply_force(force, time)
print(f"Time: {i*time}s, Position: {particle.position}, Velocity: {particle.velocity}")
استفاده از الگوریتمها در هوش مصنوعی 🤖
الگوریتمهای محاسباتی پیشرفته یکی از اجزای اصلی هوش مصنوعی هستند. به عنوان مثال، الگوریتمهای یادگیری ماشین برای بهینهسازی و یادگیری از دادهها استفاده میشوند. یکی از الگوریتمهای پایهای در این زمینه، الگوریتم نزول گرادیان (Gradient Descent) است که برای به حداقل رساندن تابع هزینه در مسائل یادگیری ماشین استفاده میشود.
import numpy as np
def gradient_descent(X, y, learning_rate=0.01, iterations=1000):
m = len(y)
theta = np.zeros(X.shape[1])
for i in range(iterations):
gradients = (1/m) * np.dot(X.T, (np.dot(X, theta) - y))
theta -= learning_rate * gradients
return theta
# مثال با دادههای مصنوعی
X = np.array([[1, 1], [1, 2], [2, 2], [2, 3]])
y = np.array([6, 8, 9, 11])
theta = gradient_descent(X, y)
print(f"Optimized Parameters: {theta}")
بهینهسازی الگوریتمها برای کارایی بالا 🔄
برای کاربردهای سنگین مانند شبیهسازیهای پیچیده و یا الگوریتمهای یادگیری ماشین، بهینهسازی کد برای کارایی بالا اهمیت زیادی دارد. از جمله روشهای بهینهسازی میتوان به استفاده از کتابخانههای محاسباتی بهینه مانند NumPy، اجرای موازی (parallel processing)، و بهینهسازی حافظه اشاره کرد.
(🚩اینجا کلیک کن تا بیشتر یاد بگیری🚩)
#Algorithms #Computational_Programming #MachineLearning #AI #Python #برنامهنویسی #الگوریتم #شبیهسازی #محاسبات_پیشرفته #هوش_مصنوعی