Python3
200 subscribers
100 photos
6 videos
26 files
518 links
🎓 آموزش و پروژه‌های Python
آموزش‌های کاربردی و پروژه‌های عملی Python برای همه سطوح. 🚀
Download Telegram
📢 ۵ کد کاربردی با ماژول robotframework در پایتون🚀

سلام دوستان! امروز ۵ کد کاربردی و جالب از ماژول robotframework را برای شما آماده کرده‌ایم که می‌توانید از آنها برای خودکارسازی وظایف مختلف استفاده کنید. 🌟

باز کردن مرورگر و بررسی عنوان صفحه

این کد مرورگر را باز کرده و عنوان صفحه را بررسی می‌کند.

*** Settings ***
Library SeleniumLibrary

*** Variables ***
${URL} https://example.com

*** Test Cases ***
Open Browser and Check Title
Open Browser ${URL} chrome
Title Should Be Example Domain
[Teardown] Close Browser

2. ورود به یک وبسایت و بررسی پیام خوش‌آمدگویی

این کد برای ورود به یک وبسایت و بررسی پیام خوش‌آمدگو Settings.

*** Settings ***
Library SeleniumLibrary

*** Variables ***
${URL} https://example-login.com
${USERNAME} your_username
${PASSWORD} your_password

*** Test Cases ***
Login Test
Open Browser ${URL} chrome
Input Text id:username ${USERNAME}
Input Text id:password ${PASSWORD}
Click Button id:login-button
Wait Until Page Contains Welcome, ${USERNAME}
[Teardown] Close Browser


3. جستجوی کلمه در گوگل

این کد برای جستجوی ی* Settings می‌شود.

*** Settings ***
Library SeleniumLibrary

*** Variables ***
${URL} https://www.google.com
${SEARCH_TERM} Robot Framework

*** Test Cases ***
Google Search
Open Browser ${URL} chrome
Input Text name:q ${SEARCH_TERM}
Press Keys name:q ENTER
Wait Until Page Contains ${SEARCH_TERM}
[Teardown] Close Browser

4. آپلود فایل در یک فرم * Settings استفاده می‌شود.

*** Settings ***
Library SeleniumLibrary

*** Variables ***
${URL} https://example-upload.com
${FILE_PATH} /path/to/your/file.txt

*** Test Cases ***
Upload File
Open Browser ${URL} chrome
Choose File id:file-upload ${FILE_PATH}
Click Button id:submit-button
Wait Until Page Contains File uploaded successfully
[Teardown] Close Browser


5. تست API با استفاده از RequestsLibrary
* Settings gs پاسخ استفاده می‌شود.

*** Settings ***
Library RequestsLibrary

*** Variables ***
${API_URL} https://api.example.com/data

*** Test Cases ***
Test API
Create Session api_session ${API_URL}
${response}= Get Request api_session /endpoint
Status Should Be ${response} 200
[Teardown] Delete Session api_session

🔻بیا اینجا تا بیشتر یاد بگیری🔻


#Python #RobotFramework #Automation #Testing #Code #Programming
اخبار مهم امروز درباره پایتون - ۲۷ ژوئیه ۲۰۲۴

۱. انتشار نسخه بتا 4 از پایتون 3.13.0
نسخه بتا 4 از پایتون 3.13.0 منتشر شد. این نسخه شامل ویژگی‌های جدید و بهبود عملکردهای مختلف است که کارایی زبان برنامه‌نویسی پایتون را افزایش می‌دهد.

۲. توسعه پایتون بدون GIL
شورای راهبری پایتون اعلام کرد که قصد دارد پیشنهاد PEP 703 را بپذیرد که قفل جهانی مفسر (GIL) را در نسخه‌های آینده پایتون اختیاری می‌کند. این تغییر بهبود بزرگی برای عملکرد پایتون در برنامه‌های چند رشته‌ای خواهد بود و به خصوص برای محاسبات علمی و داده‌های بزرگ مفید است.

۳. تغییرات در قوانین بنیاد نرم‌افزار پایتون
بنیاد نرم‌افزار پایتون (PSF) اعلام کرد که از تاریخ ۱۰ اوت ۲۰۲۴ تغییراتی در قوانین خود اعمال خواهد کرد. این تغییرات به منظور بهبود شفافیت و افزایش دسترسی به منابع برای توسعه‌دهندگان پایتون انجام شده است.

۴. برگزاری کنفرانس EuroPython 2024
کنفرانس EuroPython 2024 در ماه ژوئیه به صورت حضوری و آنلاین برگزار شد. این کنفرانس یکی از بزرگترین رویدادهای جامعه پایتون در اروپا است و برنامه‌های متنوعی برای توسعه‌دهندگان و علاقه‌مندان به پایتون ارائه داد.

۵. ارائه گرنت‌های مجازی توسط بنیاد نرم‌افزار پایتون
بنیاد نرم‌افزار پایتون گرنت‌هایی برای رویدادهای مجازی ارائه می‌دهد. توسعه‌دهندگان می‌توانند برای دریافت کمک‌های مالی تا سقف ۲۵۰۰ دلار برای رویدادهای بزرگ مجازی و همچنین گرنت‌های کوچکتر برای رویدادهای دیگر درخواست دهند.

۶. افزایش حقوق توسعه‌دهندگان پایتون در سال ۲۰۲۴
بررسی‌های جدید نشان می‌دهد که حقوق توسعه‌دهندگان پایتون در سال ۲۰۲۴ افزایش قابل توجهی داشته است. این افزایش حقوق به دلیل تقاضای بالا برای تخصص‌های مرتبط با پایتون و نیاز به توسعه‌دهندگان ماهر در این زمینه است.

۷. پایتون همچنان در صدر محبوب‌ترین زبان‌های برنامه‌نویسی
بر اساس آخرین آمارهای شاخص TIOBE، پایتون همچنان به عنوان محبوب‌ترین زبان برنامه‌نویسی در جهان شناخته می‌شود. این زبان به دلیل سادگی و قدرت بالا در کاربردهای مختلف از جمله علم داده، هوش مصنوعی و توسعه وب، مورد توجه بسیاری از توسعه‌دهندگان قرار گرفته است.

🔻اینجا کلیک کن تا بیشتر با خبر شی🔻

#Python #Programming #EuroPython2024 #PSF #PythonDevelopment #TechNews #Coding
آموزش الگوریتم جستجوی عمق‌اول (Depth-First Search - DFS)

مقدمه:

الگوریتم جستجوی عمق‌اول (DFS) یک روش جستجو برای پیمایش یا جستجو درخت‌ها و گراف‌ها است. در این الگوریتم، ما به عمق مسیرها می‌رویم و تا زمانی که به یک گره انتهایی برسیم، از آن مسیر خارج نمی‌شویم.

مراحل اجرای DFS:

1. شروع از گره مبدا:

از یک گره مشخص (مثلاً start) شروع می‌کنیم.

2. بازدید از گره‌ها:

گره فعلی را بازدید کرده و آن را به لیست گره‌های بازدید شده اضافه می‌کنیم.

3. حرکت به گره‌های همسایه:

به یکی از گره‌های همسایه که هنوز بازدید نشده است حرکت می‌کنیم و از همانجا دوباره مراحل 1 و 2 را اجرا می‌کنیم.

4. بازگشت به عقب:

اگر گره‌ای همسایه‌ای نداشت که بازدید نشده باشد، به عقب برمی‌گردیم و از گره قبلی یکی دیگر از همسایه‌ها را انتخاب می‌کنیم.

5. پایان:

این فرآیند تا زمانی که تمامی گره‌ها بازدید شوند ادامه می‌یابد.

پیاده‌سازی DFS در پایتون:

def dfs(graph, start, visited=None):
if visited is None:
visited = set() # مجموعه‌ای برای نگهداری گره‌های بازدید شده
visited.add(start) # افزودن گره فعلی به مجموعه بازدید شده‌ها
print(start) # چاپ گره بازدید شده (می‌توانید این قسمت را به دلخواه تغییر دهید)

for neighbor in graph[start]: # بررسی همسایه‌های گره فعلی
if neighbor not in visited: # اگر همسایه هنوز بازدید نشده بود
dfs(graph, neighbor, visited) # بازگشتی برای بازدید از همسایه
return visited # بازگرداندن مجموعه گره‌های بازدید شده

مثال عملی:

فرض کنید یک گراف به شکل زیر داریم:

graph = {
'A': ['B', 'C'],
'B': ['D', 'E'],
'C': ['F'],
'D': [],
'E': ['F'],
'F': []
}

برای اجرای الگوریتم DFS از گره 'A'، کد زیر را اجرا می‌کنیم:

visited_nodes = dfs(graph, 'A')
print("Visited Nodes:", visited_nodes)

توضیحات:

در این مثال، الگوریتم DFS از گره 'A' شروع کرده و به ترتیب به گره‌های 'B'، 'D'، 'E' و 'F' می‌رود.

مزایا و معایب الگوریتم DFS:

مزایا:

- پیاده‌سازی ساده و مستقیم.
- مصرف حافظه کمتر نسبت به الگوریتم جستجوی عرض‌اول (BFS) برای گراف‌های بزرگ.

معایب:

- ممکن است به عمق بسیار زیادی برود (به خصوص در گراف‌های بزرگ و عمیق).
- در برخی موارد، تمام مسیرها را پیمایش می‌کند و ممکن است بهینه نباشد.

🟥برای یاد گرفتن الگوریتم های بیشتر اینجا کلیک کن🟥

#DFS #Python #GraphAlgorithm #پایتون #الگوریتم #برنامه‌نویسی
👍21
🌟 TechSavvy Algorithms: The Ultimate Recommendation System! 🌟

👨‍💻 Introducing the Most Advanced Collaborative Filtering System 👩‍💻

In today's world, recommendation systems are an essential part of many online services. From online stores to streaming services for movies and music, these systems are used to enhance user experience and boost engagement.

💡 TechSavvy Algorithms is an advanced recommendation system based on Collaborative Filtering, utilizing cutting-edge techniques and optimization algorithms to provide accurate and personalized recommendations.

📚 Features and Applications of TechSavvy Algorithms:

1. Advanced Collaborative Filtering Techniques:
- Leverage user data to identify common patterns and deliver precise suggestions.

2. Efficient Data Processing:
- Prepare and normalize data to maximize recommendation accuracy.

3. Scalable SVD Model Training:
- Employ Singular Value Decomposition (SVD) to reduce data dimensions and extract key features.

4. Personalized Recommendations:
- Suggest new movies, products, or content based on users' interests and preferences.

📈 How You Can Utilize This Source Code:
- Online Stores: Recommend related products based on previous purchases.
- Streaming Services: Suggest new movies and music to users.
- Social Networks: Recommend new friends or content based on user interests.

🚀 TechSavvy Algorithms helps you improve user experience with precise and personalized suggestions, giving you a competitive edge. By incorporating this advanced algorithm into your projects, you can elevate your offerings and exceed user expectations.

📚 Get and Use This Source Code:
We're offering this powerful and valuable source code for free. Download it now and start enhancing your projects!

👉👉click👈👈

#Programming #Algorithms #RecommendationSystem #TechSavvy #Python #MachineLearning #OpenSource #FreeCode
Forwarded from Python3
📚 برنامه کامل دوره آموزش پایتون از 0 تا 100

خوشحالیم که به دوره جامع آموزش پایتون از 0 تا 100 پیوستید. 🎉 این دوره برای تمامی سطوح طراحی شده و شما را از پایه تا پیشرفته به دنیای برنامه‌نویسی با پایتون می‌برد. در این پست، برنامه کامل دوره و موضوعات هر پارت را معرفی می‌کنیم. می‌توانید با کلیک روی هر موضوع، به لینک مربوطه دسترسی پیدا کنید.


1. [نصب و راه‌اندازی پایتون]
2. [متغیرها و انواع داده‌ها]
3. [عملیات ریاضی و منطقی]
4. [دستورات شرطی]
5. [لیست‌ها و تاپل‌ها]
6. [دیکشنری‌ها و مجموعه‌ها]
7. [حلقه‌ها]
8. [توابع]
9. [مدیریت فایل]
10. [مدیریت استثناء‌ها]
11. [مفاهیم پایه OOP]
12. [وراثت و پلی‌مورفیسم]
13. [ماژول‌ها و پکیج‌ها]
14. [کتابخانه‌های استاندارد پایتون]
15. [پروژه 1 - مدیریت مخاطبین]
16. [پروژه 2 - ماشین حساب پیشرفته]
17. [Decorators و Generators]
18. [مدیریت حافظه و Garbage Collection]
19. [معرفی Flask]
20. [معرفی Django]
21. [معرفی Pandas]
22. [معرفی NumPy]
23. [پروژه نهایی - تحلیل داده‌ها]
24. [جمع‌بندی و منابع بیشتر]


با دنبال کردن این دوره، شما به تسلط کامل بر پایتون خواهید رسید و قادر خواهید بود پروژه‌های کاربردی و پیشرفته را اجرا کنید. هر پارت شامل توضیحات کامل، مثال‌ها و تمرین‌های عملی است که به شما کمک می‌کند تا مفاهیم را به خوبی درک کرده و در عمل به کار ببرید.

به زودی لینک‌های هر پارت در دسترس قرار خواهند گرفت تا به راحتی بتوانید به تمامی مطالب دسترسی داشته باشید. از همراهی شما سپاسگزاریم و امیدواریم این دوره برای شما مفید و لذت‌بخش باشد. 🚀

#پایتون #آموزش_پایتون #برنامه_نویسی #دوره_آموزشی #Python #Programming #PythonCourse
👍2
پارت ۱: آموزش ماژول python-telegram-bot

۱. معرفی ربات‌های تلگرام و کاربردهای آن‌ها

ربات‌های تلگرام ابزارهایی هستند که به کاربران امکان تعامل خودکار با سرویس‌های مختلف را می‌دهند. از ربات‌ها می‌توان برای ارسال اطلاعیه‌ها، جمع‌آوری داده‌ها، بازی‌ها و حتی فروش محصولات استفاده کرد.

۲. نصب کتابخانه python-telegram-bot

برای شروع، نیاز داریم که کتابخانه python-telegram-bot را نصب کنیم. دستور زیر را در ترمینال یا CMD وارد کنید:

pip install python-telegram-bot

۳. ایجاد ربات جدید در تلگرام و دریافت توکن

برای ساخت ربات جدید، مراحل زیر را دنبال کنید:

1. به تلگرام بروید و با @BotFather صحبت کنید.
2. دستور /newbot را ارسال کنید و دستورالعمل‌ها را دنبال کنید.
3. توکن (Token) رباتتان را دریافت کنید.

۴. نوشتن یک ربات ساده برای پاسخ به دستورات /start و /help

وارد کردن کتابخانه‌ها و تعریف توکن:

from telegram import Update
from telegram.ext import Updater, CommandHandler, MessageHandler, Filters, CallbackContext

TOKEN = 'YOUR_BOT_TOKEN'

تعریف دستورات ربات:

def start(update: Update, context: CallbackContext) -> None:
update.message.reply_text('سلام! به ربات من خوش آمدید.')

def help_command(update: Update, context: CallbackContext) -> None:
update.message.reply_text('چطور می‌توانم به شما کمک کنم؟')

تعریف هندلر پیام‌ها:

برای پاسخ دادن به پیام‌های متنی کاربران، نیاز به یک هندلر پیام داریم.

def echo(update: Update, context: CallbackContext) -> None:
update.message.reply_text(update.message.text)

راه‌اندازی و اجرای ربات:

حالا باید ربات را پیکربندی کنیم تا دستورات و هندلر پیام‌ها را بشناسد و اجرا کند.

def main():
updater = Updater(TOKEN)

dispatcher = updater.dispatcher

dispatcher.add_handler(CommandHandler("start", start))
dispatcher.add_handler(CommandHandler("help", help_command))
dispatcher.add_handler(MessageHandler(Filters.text & ~Filters.command, echo))

updater.start_polling()
updater.idle()

if __name__ == '__main__':
main()

این کد رباتی ایجاد می‌کند که به دستورات /start و /help پاسخ می‌دهد و هر پیام متنی که دریافت کند را به همان صورت برمی‌گرداند. 🎉

امیدوارم از این آموزش لذت برده باشید! برای دیدن آموزش‌های بیشتر، کانال ما را دنبال کنید.
[کانال تلگرام]

#پایتون #آموزش_پایتون #ربات_تلگرام #برنامه_نویسی #python #telegram_bot
👍2
پارت ۲: مدیریت پیام‌ها و دستورات

۱. ایجاد هندلرهای مختلف برای دستورات مختلف (مثل /start, /help)

برای هر دستور، می‌توان یک هندلر تعریف کرد که به پیام‌های مربوطه پاسخ دهد. برای مثال، هندلرهای /start و /help را به صورت زیر تعریف می‌کنیم:

def start(update: Update, context: CallbackContext) -> None:
update.message.reply_text('سلام! به ربات من خوش آمدید.')

def help_command(update: Update, context: CallbackContext) -> None:
update.message.reply_text('چطور می‌توانم به شما کمک کنم؟')

۲. مدیریت پیام‌های متنی کاربران و پاسخ‌دهی به آن‌ها

با استفاده از یک هندلر پیام می‌توانیم پیام‌های متنی کاربران را دریافت کرده و به آن‌ها پاسخ دهیم:

def echo(update: Update, context: CallbackContext) -> None:
update.message.reply_text(update.message.text)

۳. استفاده از فیلترها برای تشخیص نوع پیام‌ها

فیلترها می‌توانند برای تشخیص نوع خاصی از پیام‌ها استفاده شوند. برای مثال، فیلتر Filters.text & ~Filters.command فقط پیام‌های متنی غیر دستوری را انتخاب می‌کند:

dispatcher.add_handler(MessageHandler(Filters.text & ~Filters.command, echo))

۴. راه‌اندازی و اجرای ربات

همانطور که در پارت ۱ توضیح داده شد، ربات را پیکربندی کرده و اجرا می‌کنیم:

def main():
updater = Updater(TOKEN)

dispatcher = updater.dispatcher

dispatcher.add_handler(CommandHandler("start", start))
dispatcher.add_handler(CommandHandler("help", help_command))
dispatcher.add_handler(MessageHandler(Filters.text & ~Filters.command, echo))

updater.start_polling()
updater.idle()

if __name__ == '__main__':
main()

این کد به ربات اجازه می‌دهد تا به دستورات /start و /help پاسخ دهد و هر پیام متنی غیر دستوری را بازتاب دهد. 🎉

امیدوارم از این آموزش لذت برده باشید! برای دیدن آموزش‌های بیشتر، کانال ما را دنبال کنید.
[کانال تلگرام]

#پایتون #آموزش_پایتون #ربات_تلگرام #برنامه_نویسی #python #telegram_bot
👍2
پارت ۳: استفاده از پایگاه داده

۱. نصب و راه‌اندازی SQLite

برای ذخیره اطلاعات کاربران و داده‌های ربات، می‌توان از پایگاه داده SQLite استفاده کرد. ابتدا کتابخانه sqlite3 را که به صورت پیش‌فرض در پایتون موجود است، وارد می‌کنیم:

import sqlite3

۲. اتصال ربات به پایگاه داده

ابتدا باید یک پایگاه داده ایجاد کنیم و سپس به آن متصل شویم. برای این کار، یک فایل پایگاه داده به نام bot_database.db ایجاد می‌کنیم:

conn = sqlite3.connect('bot_database.db')
cursor = conn.cursor()

۳. ایجاد جداول مورد نیاز

جدول‌هایی که نیاز داریم را ایجاد می‌کنیم. برای مثال، جدولی برای ذخیره اطلاعات کاربران:

cursor.execute('''
CREATE TABLE IF NOT EXISTS users (
user_id INTEGER PRIMARY KEY,
username TEXT,
first_name TEXT,
last_name TEXT
)
''')
conn.commit()

۴. ذخیره اطلاعات کاربران

هنگامی که یک کاربر جدید با ربات تعامل می‌کند، اطلاعات او را در پایگاه داده ذخیره می‌کنیم. این کار را می‌توانیم در هندلر دستور /start انجام دهیم:

def start(update: Update, context: CallbackContext) -> None:
user = update.message.from_user
cursor.execute('''
INSERT OR IGNORE INTO users (user_id, username, first_name, last_name)
VALUES (?, ?, ?, ?)
''', (user.id, user.username, user.first_name, user.last_name))
conn.commit()
update.message.reply_text('سلام! به ربات من خوش آمدید.')

۵. بازیابی اطلاعات از پایگاه داده

برای بازیابی اطلاعات کاربران از پایگاه داده، می‌توانیم یک تابع تعریف کنیم. برای مثال، تابعی که لیست کاربران را برمی‌گرداند:

def get_users():
cursor.execute('SELECT * FROM users')
return cursor.fetchall()

۶. به‌روزرسانی و حذف اطلاعات

برای به‌روزرسانی و حذف اطلاعات نیز می‌توانیم توابع مشابهی تعریف کنیم. برای مثال، به‌روزرسانی نام کاربری یک کاربر:

def update_username(user_id, new_username):
cursor.execute('''
UPDATE users
SET username = ?
WHERE user_id = ?
''', (new_username, user_id))
conn.commit()

راه‌اندازی و اجرای ربات

در نهایت، کد کامل ربات با اتصال به پایگاه داده به شکل زیر خواهد بود:

import sqlite3
from telegram import Update
from telegram.ext import Updater, CommandHandler, MessageHandler, Filters, CallbackContext

TOKEN = 'YOUR_BOT_TOKEN'

conn = sqlite3.connect('bot_database.db')
cursor = conn.cursor()

cursor.execute('''
CREATE TABLE IF NOT EXISTS users (
user_id INTEGER PRIMARY KEY,
username TEXT,
first_name TEXT,
last_name TEXT
)
''')
conn.commit()

def start(update: Update, context: CallbackContext) -> None:
user = update.message.from_user
cursor.execute('''
INSERT OR IGNORE INTO users (user_id, username, first_name, last_name)
VALUES (?, ?, ?, ?)
''', (user.id, user.username, user.first_name, user.last_name))
conn.commit()
update.message.reply_text('سلام! به ربات من خوش آمدید.')

def help_command(update: Update, context: CallbackContext) -> None:
update.message.reply_text('چطور می‌توانم به شما کمک کنم؟')

def echo(update: Update, context: CallbackContext) -> None:
update.message.reply_text(update.message.text)

def main():
updater = Updater(TOKEN)

dispatcher = updater.dispatcher

dispatcher.add_handler(CommandHandler("start", start))
dispatcher.add_handler(CommandHandler("help", help_command))
dispatcher.add_handler(MessageHandler(Filters.text & ~Filters.command, echo))

updater.start_polling()
updater.idle()

if __name__ == '__main__':
main()

این کد رباتی ایجاد می‌کند که به دستورات /start و /help پاسخ می‌دهد و اطلاعات کاربران را در یک پایگاه داده SQLite ذخیره می‌کند. 🎉

امیدوارم از این آموزش لذت برده باشید! برای دیدن آموزش‌های بیشتر، کانال ما را دنبال کنید.
[کانال تلگرام]

#پایتون #آموزش_پایتون #ربات_تلگرام #برنامه_نویسی #python #telegram_bot
👍1
☝️☝️ادامه کد بالا☝️☝️
updater.start_polling()
updater.idle()

if name == 'main':
main()

این کد به ربات اجازه می‌دهد تا عکس، ویدئو ارسال کند و پیام‌هایی با دکمه‌های تعاملی ایجاد کند که کاربران می‌توانند آن‌ها را انتخاب کنند. 🎉

امیدوارم از این آموزش لذت برده باشید! برای دیدن آموزش‌های بیشتر، کانال ما را دنبال کنید.
[کانال تلگرام]

#پایتون #آموزش_پایتون #ربات_تلگرام #برنامه_نویسی #python #telegram_bot
👍1
☝️☝️ادامه کد بالا☝️☝️
def get_age(update: Update, context: CallbackContext) -> int:
context.user_data['age'] = update.message.text
update.message.reply_text(f"نام شما: {context.user_data['name']}\nسن شما: {context.user_data['age']}")
return ConversationHandler.END

def cancel(update: Update, context: CallbackContext) -> int:
update.message.reply_text('مکالمه لغو شد.')
return ConversationHandler

.END

conv_handler = ConversationHandler(
entry_points=[CommandHandler('start_convo', start_conversation)],
states={
NAME: [MessageHandler(Filters.text & ~Filters.command, get_name)],
AGE: [MessageHandler(Filters.text & ~Filters.command, get_age)],
},
fallbacks=[CommandHandler('cancel', cancel)],
)

def main():
updater = Updater(TOKEN)

dispatcher = updater.dispatcher

dispatcher.add_handler(CommandHandler("start", start))
dispatcher.add_handler(CommandHandler("help", help_command))
dispatcher.add_handler(CommandHandler("users", list_users))
dispatcher.add_handler(CommandHandler("schedule", schedule_message))
dispatcher.add_handler(CommandHandler("secret", secret_command))
dispatcher.add_handler(MessageHandler(Filters.text & ~Filters.command, echo))
dispatcher.add_handler(CallbackQueryHandler(button))
dispatcher.add_handler(conv_handler)
dispatcher.add_error_handler(error)

updater.start_polling()
updater.idle()

if name == 'main':
main()

این کد رباتی را ایجاد می‌کند که قابلیت‌های پیشرفته‌ای مانند ارسال پیام‌های چندرسانه‌ای، مکالمات تعاملی، پیام‌های زمان‌بندی‌شده و مدیریت خطاها دارد. 🎉

امیدوارم از این آموزش لذت برده باشید! برای دیدن آموزش‌های بیشتر، کانال ما را دنبال کنید.
[کانال تلگرام]

#پایتون #آموزش_پایتون #ربات_تلگرام #برنامه_نویسی #python #telegram_bot
👍2
📅 اخبار پایتون - ۸ اوت ۲۰۲۴

با سلام به همه دوستداران پایتون! امروز در تاریخ ۸ اوت ۲۰۲۴، آخرین و مهم‌ترین اخبار مربوط به دنیای پایتون را برای شما گردآوری کرده‌ایم. از انتشار نسخه‌های جدید گرفته تا دستاوردهای بزرگ در جامعه پایتون، همه اینجا هستند! 🎉

۱. انتشار پایتون 3.12.1 🚀

اولین خبر مهم، انتشار نسخه 3.12.1 از پایتون است. این نسخه بهبودهای قابل توجهی در عملکرد و بهینه‌سازی حافظه دارد. همچنین، برخی از باگ‌های گزارش شده در نسخه قبلی رفع شده‌اند. این به‌روزرسانی به توسعه‌دهندگان این امکان را می‌دهد که از آخرین امکانات پایتون با بهره‌وری بیشتر استفاده کنند.

۲. معرفی PyScript 2.0 برای توسعه وب 🔥

پلتفرم PyScript که به توسعه‌دهندگان امکان می‌دهد تا از پایتون در توسعه وب استفاده کنند، نسخه 2.0 خود را معرفی کرده است. این نسخه با بهبودهای فراوان در عملکرد، پشتیبانی از فریم‌ورک‌های وب محبوب، و امکانات جدیدی مانند تعامل بهتر با جاوااسکریپت، توجه بسیاری از توسعه‌دهندگان وب را به خود جلب کرده است.

۳. افزوده شدن PyTorch به استانداردهای پایتون 3.13 🤖

خبر بزرگ برای جامعه هوش مصنوعی! کتابخانه PyTorch به عنوان یک استاندارد رسمی در پایتون 3.13 افزوده خواهد شد. این تغییر به توسعه‌دهندگان هوش مصنوعی امکان می‌دهد که به سادگی از امکانات پیشرفته این کتابخانه قدرتمند در پروژه‌های خود استفاده کنند.

۴. افزایش محبوبیت FastAPI در توسعه وب 🖥️

FastAPI به سرعت در حال تبدیل شدن به یکی از فریم‌ورک‌های محبوب توسعه وب در جامعه پایتون است. گزارش‌های اخیر نشان می‌دهد که FastAPI با افزایش 35 درصدی در استفاده در سال 2024، به یکی از انتخاب‌های اصلی توسعه‌دهندگان برای ساخت API‌های مدرن و کارا تبدیل شده است.

۵. بهبود امنیت در پکیج‌های PyPI 🔒

در پاسخ به افزایش نگرانی‌ها درباره امنیت در پکیج‌های PyPI، تیم PyPI اقدامات جدیدی برای بهبود امنیت معرفی کرده است. از جمله این اقدامات می‌توان به احراز هویت چندمرحله‌ای (MFA) و بررسی خودکار کدهای پکیج‌های جدید اشاره کرد. این تغییرات به توسعه‌دهندگان اطمینان بیشتری در استفاده از پکیج‌های موجود در PyPI می‌دهد.

۶. توسعه ابزارهای پشتیبانی از پایتون در رباتیک 🤖

در حوزه رباتیک، ابزارهای پشتیبانی از پایتون همچنان در حال گسترش هستند. کتابخانه‌های جدیدی برای کنترل و برنامه‌ریزی ربات‌ها معرفی شده‌اند که به کاربران امکان می‌دهند تا ربات‌های خود را با استفاده از پایتون به سادگی برنامه‌ریزی و کنترل کنند. این تغییرات باعث رشد سریع پایتون در جامعه رباتیک شده است.

۷. معرفی پلتفرم جدید یادگیری آنلاین با محوریت پایتون 🎓

در راستای افزایش علاقه‌مندان به یادگیری پایتون، یک پلتفرم جدید یادگیری آنلاین معرفی شده است که به کاربران امکان می‌دهد تا با استفاده از دوره‌های آموزشی تعاملی و پروژه‌های واقعی، مهارت‌های خود را در پایتون بهبود بخشند. این پلتفرم شامل دوره‌های مبتدی تا پیشرفته و همچنین حوزه‌های مختلفی مانند علم داده، هوش مصنوعی، و توسعه وب است.

(🚩اینجا کلیک کن تا بیشتر یاد بگیری🚩)

#Python #پایتون #اخبار_پایتون #توسعه_نرم‌افزار #فریم‌ورک_وب #هوش_مصنوعی #رباتیک #آموزش_پایتون #امنیت_نرم‌افزار
ادامه کد ☝️
# تعریف ذرات و نیروها
particle = Particle(0.0, 0.0, 1.0)
force = 10.0
time = 1.0

# اعمال نیرو و شبیه‌سازی حرکت ذره
for i in range(10):
particle.apply_force(force, time)
print(f"Time: {i*time}s, Position: {particle.position}, Velocity: {particle.velocity}")

استفاده از الگوریتم‌ها در هوش مصنوعی 🤖

الگوریتم‌های محاسباتی پیشرفته یکی از اجزای اصلی هوش مصنوعی هستند. به عنوان مثال، الگوریتم‌های یادگیری ماشین برای بهینه‌سازی و یادگیری از داده‌ها استفاده می‌شوند. یکی از الگوریتم‌های پایه‌ای در این زمینه، الگوریتم نزول گرادیان (Gradient Descent) است که برای به حداقل رساندن تابع هزینه در مسائل یادگیری ماشین استفاده می‌شود.

import numpy as np

def gradient_descent(X, y, learning_rate=0.01, iterations=1000):
m = len(y)
theta = np.zeros(X.shape[1])
for i in range(iterations):
gradients = (1/m) * np.dot(X.T, (np.dot(X, theta) - y))
theta -= learning_rate * gradients
return theta

# مثال با داده‌های مصنوعی
X = np.array([[1, 1], [1, 2], [2, 2], [2, 3]])
y = np.array([6, 8, 9, 11])
theta = gradient_descent(X, y)

print(f"Optimized Parameters: {theta}")

بهینه‌سازی الگوریتم‌ها برای کارایی بالا 🔄

برای کاربردهای سنگین مانند شبیه‌سازی‌های پیچیده و یا الگوریتم‌های یادگیری ماشین، بهینه‌سازی کد برای کارایی بالا اهمیت زیادی دارد. از جمله روش‌های بهینه‌سازی می‌توان به استفاده از کتابخانه‌های محاسباتی بهینه مانند NumPy، اجرای موازی (parallel processing)، و بهینه‌سازی حافظه اشاره کرد.

(🚩اینجا کلیک کن تا بیشتر یاد بگیری🚩)

#Algorithms #Computational_Programming #MachineLearning #AI #Python #برنامه‌نویسی #الگوریتم #شبیه‌سازی #محاسبات_پیشرفته #هوش_مصنوعی
ارسال پارامترهای یک کلاس به کلاس دیگر در پایتون 🐍

در پایتون، وقتی می‌خواهید از پارامترهای یک کلاس در کلاس دیگری استفاده کنید، می‌توانید این کار را با استفاده از متدها و سازنده‌ها (Constructors) انجام دهید. در اینجا یک مثال ساده آورده شده است.

مثال: ارسال پارامترهای یک کلاس به کلاس دیگر

class ClassA:
def __init__(self, param1, param2):
self.param1 = param1
self.param2 = param2

class ClassB:
def __init__(self, class_a_instance):
self.param1 = class_a_instance.param1
self.param2 = class_a_instance.param2

def display_params(self):
print(f"Param1: {self.param1}, Param2: {self.param2}")

# ایجاد یک شیء از کلاس A
a = ClassA(10, 20)

# ارسال شیء کلاس A به کلاس B
b = ClassB(a)

# نمایش مقادیر پارامترها در کلاس B
b.display_params()

توضیحات:

1. ClassA:
- این کلاس دو پارامتر param1 و param2 را دریافت کرده و آن‌ها را به عنوان ویژگی‌های (Attributes) شیء ذخیره می‌کند.

2. ClassB:
- این کلاس به عنوان ورودی یک شیء از نوع ClassA دریافت می‌کند و مقادیر param1 و param2 آن شیء را در خودش ذخیره می‌کند.
- متد display_params مقادیر این پارامترها را چاپ می‌کند.

3. نحوه استفاده:
- ابتدا یک شیء از کلاس A با مقادیر خاصی ایجاد می‌شود.
- سپس این شیء به کلاس B ارسال شده و مقادیر آن استخراج و در کلاس B مورد استفاده قرار می‌گیرد.

خروجی:

Param1: 10, Param2: 20

به همین سادگی می‌توانید پارامترهای یک کلاس را به کلاس دیگری ارسال کرده و از آن‌ها استفاده کنید! 😎

⚠️کلیک کن تا بیشتر یاد بگیری⚠️


#Python #برنامه‌نویسی #آموزش_پایتون #کلاس_ها #OOP
1
ارسال پارامترهای یک کلاس به کلاس دیگر در پایتون 🐍

در پایتون، وقتی می‌خواهید از پارامترهای یک کلاس در کلاس دیگری استفاده کنید، می‌توانید این کار را با استفاده از متدها و سازنده‌ها (Constructors) انجام دهید. در اینجا یک مثال ساده آورده شده است.

مثال: ارسال پارامترهای یک کلاس به کلاس دیگر

class ClassA:
def __init__(self, param1, param2):
self.param1 = param1
self.param2 = param2

class ClassB:
def __init__(self, class_a_instance):
self.param1 = class_a_instance.param1
self.param2 = class_a_instance.param2

def display_params(self):
print(f"Param1: {self.param1}, Param2: {self.param2}")

# ایجاد یک شیء از کلاس A
a = ClassA(10, 20)

# ارسال شیء کلاس A به کلاس B
b = ClassB(a)

# نمایش مقادیر پارامترها در کلاس B
b.display_params()

توضیحات:

1. ClassA:
- این کلاس دو پارامتر param1 و param2 را دریافت کرده و آن‌ها را به عنوان ویژگی‌های (Attributes) شیء ذخیره می‌کند.

2. ClassB:
- این کلاس به عنوان ورودی یک شیء از نوع ClassA دریافت می‌کند و مقادیر param1 و param2 آن شیء را در خودش ذخیره می‌کند.
- متد display_params مقادیر این پارامترها را چاپ می‌کند.

3. نحوه استفاده:
- ابتدا یک شیء از کلاس A با مقادیر خاصی ایجاد می‌شود.
- سپس این شیء به کلاس B ارسال شده و مقادیر آن استخراج و در کلاس B مورد استفاده قرار می‌گیرد.

خروجی:

Param1: 10, Param2: 20

به همین سادگی می‌توانید پارامترهای یک کلاس را به کلاس دیگری ارسال کرده و از آن‌ها استفاده کنید! 😎

⚠️کلیک کن تا بیشتر یاد بگیری⚠️


#Python #برنامه‌نویسی #آموزش_پایتون #کلاس_ها #OOP
ارسال پارامترهای یک کلاس به چهار کلاس دیگر برای انجام معادلات مختلف 🧮

در این مثال، ما یک کلاس به نام ClassA ایجاد می‌کنیم که سه عدد به عنوان پارامتر دریافت می‌کند. سپس این پارامترها به چهار کلاس مختلف ارسال می‌شوند که هر یک از این کلاس‌ها یک عملیات ریاضی خاص را روی این اعداد انجام می‌دهند.

مثال: ارسال پارامترها به چهار کلاس مختلف

class ClassA:
def __init__(self, num1, num2, num3):
self.num1 = num1
self.num2 = num2
self.num3 = num3

class Addition:
def __init__(self, class_a_instance):
self.result = class_a_instance.num1 + class_a_instance.num2 + class_a_instance.num3

def get_result(self):
return f"جمع اعداد: {self.result}"

class Multiplication:
def __init__(self, class_a_instance):
self.result = class_a_instance.num1 * class_a_instance.num2 * class_a_instance.num3

def get_result(self):
return f"ضرب اعداد: {self.result}"

class Average:
def __init__(self, class_a_instance):
self.result = (class_a_instance.num1 + class_a_instance.num2 + class_a_instance.num3) / 3

def get_result(self):
return f"میانگین اعداد: {self.result}"

class MaxValue:
def __init__(self, class_a_instance):
self.result = max(class_a_instance.num1, class_a_instance.num2, class_a_instance.num3)

def get_result(self):
return f"بیشترین عدد: {self.result}"

# ایجاد یک شیء از کلاس A
a = ClassA(10, 20, 30)

# ارسال شیء کلاس A به کلاس‌های مختلف و انجام عملیات
addition = Addition(a)
multiplication = Multiplication(a)
average = Average(a)
max_value = MaxValue(a)

# نمایش نتایج
print(addition.get_result())
print(multiplication.get_result())
print(average.get_result())
print(max_value.get_result())

توضیحات:

1. ClassA:
- این کلاس سه عدد num1، num2 و num3 را دریافت کرده و آن‌ها را به عنوان ویژگی‌های شیء ذخیره می‌کند.

2. Addition:
- این کلاس مجموع سه عدد را محاسبه کرده و نتیجه را در ویژگی result ذخیره می‌کند.
- متد get_result نتیجه جمع را بازمی‌گرداند.

3. Multiplication:
- این کلاس ضرب سه عدد را محاسبه کرده و نتیجه را در ویژگی result ذخیره می‌کند.
- متد get_result نتیجه ضرب را بازمی‌گرداند.

4. Average:
- این کلاس میانگین سه عدد را محاسبه کرده و نتیجه را در ویژگی result ذخیره می‌کند.
- متد get_result نتیجه میانگین را بازمی‌گرداند.

5. MaxValue:
- این کلاس بیشترین عدد از بین سه عدد را محاسبه کرده و نتیجه را در ویژگی result ذخیره می‌کند.
- متد get_result بیشترین عدد را بازمی‌گرداند.

خروجی:

جمع اعداد: 60
ضرب اعداد: 6000
میانگین اعداد: 20.0
بیشترین عدد: 30

این کد به طور واضح نشان می‌دهد که چگونه می‌توان پارامترهای یک کلاس را به کلاس‌های مختلف ارسال کرد و عملیات‌های مختلفی روی آن‌ها انجام داد. 🚀

⚠️کلیک کن تا بیشتر یاد بگیری⚠️

#Python #برنامه‌نویسی #آموزش_پایتون #کلاس_ها #OOP #معادلات_ریاضی
ارسال خروجی کلاس‌ها به یک کلاس جدید برای انجام عملیات‌های بیشتر 🧩

در این آموزش، قصد داریم خروجی‌های چهار کلاس مختلف که عملیات‌های ریاضی را روی پارامترها انجام داده‌اند، به یک کلاس جدید ارسال کنیم. این کلاس جدید می‌تواند عملیات‌های دیگری را روی این نتایج انجام دهد.

مثال: ارسال خروجی کلاس‌ها به یک کلاس جدید

class ClassA:
def __init__(self, num1, num2, num3):
self.num1 = num1
self.num2 = num2
self.num3 = num3

class Addition:
def __init__(self, class_a_instance):
self.result = class_a_instance.num1 + class_a_instance.num2 + class_a_instance.num3

def get_result(self):
return self.result

class Multiplication:
def __init__(self, class_a_instance):
self.result = class_a_instance.num1 * class_a_instance.num2 * class_a_instance.num3

def get_result(self):
return self.result

class Average:
def __init__(self, class_a_instance):
self.result = (class_a_instance.num1 + class_a_instance.num2 + class_a_instance.num3) / 3

def get_result(self):
return self.result

class MaxValue:
def __init__(self, class_a_instance):
self.result = max(class_a_instance.num1, class_a_instance.num2, class_a_instance.num3)

def get_result(self):
return self.result

class FinalOperations:
def __init__(self, addition, multiplication, average, max_value):
self.sum_result = addition
self.mul_result = multiplication
self.avg_result = average
self.max_result = max_value

def final_sum(self):
# جمع نتایج مختلف
return f"جمع نهایی نتایج: {self.sum_result + self.mul_result + self.avg_result + self.max_result}"

def final_multiplication(self):
# ضرب نتایج مختلف
return f"ضرب نهایی نتایج: {self.sum_result * self.mul_result * self.avg_result * self.max_result}"

# ایجاد یک شیء از کلاس A
a = ClassA(10, 20, 30)

# انجام عملیات در کلاس‌های مختلف
addition = Addition(a).get_result()
multiplication = Multiplication(a).get_result()
average = Average(a).get_result()
max_value = MaxValue(a).get_result()

# ارسال نتایج به کلاس FinalOperations
final_ops = FinalOperations(addition, multiplication, average, max_value)

# نمایش نتایج نهایی
print(final_ops.final_sum())
print(final_ops.final_multiplication())

توضیحات:

1. ClassA:
- سه عدد به عنوان ورودی می‌گیرد و آن‌ها را در خود ذخیره می‌کند.

2. Addition، Multiplication، Average، MaxValue:
- این کلاس‌ها عملیات‌های مختلفی روی اعداد انجام داده و نتیجه را برمی‌گردانند.

3. FinalOperations:
- این کلاس چهار خروجی از کلاس‌های قبلی را به عنوان ورودی می‌گیرد.
- دارای متدهای final_sum و final_multiplication است که روی این نتایج عملیات‌های جدیدی انجام می‌دهد.
- final_sum تمام نتایج را با هم جمع می‌کند.
- final_multiplication تمام نتایج را در هم ضرب می‌کند.

خروجی:

جمع نهایی نتایج: 6080.0
ضرب نهایی نتایج: 10800000000.0

با این روش، می‌توانید خروجی‌های چندین کلاس را به یک کلاس جدید ارسال کنید و عملیات‌های مختلفی روی این داده‌ها انجام دهید. این روش به شما امکان می‌دهد که کدتان را مدولارتر و قابل استفاده مجدد کنید. 🚀

⚠️کلیک کن تا بیشتر یاد بگیری⚠️

#Python #برنامه‌نویسی #آموزش_پایتون #کلاس_ها #OOP #مدولاریت_کد
پارت ۱: مقدمه‌ای بر شبکه‌های عصبی کانولوشنی (CNN) 🌐🤖

در این قسمت به کاربردها، ضرورت و مزایای الگوریتم CNN می‌پردازیم.

۱. شبکه عصبی کانولوشنی چیست؟ 🤔
شبکه‌های عصبی کانولوشنی (CNN) نوعی از شبکه‌های عصبی مصنوعی هستند که برای تحلیل داده‌های پیچیده مانند تصاویر و ویدئوها طراحی شده‌اند. این شبکه‌ها با استفاده از لایه‌های مختلف کانولوشنی قادرند ویژگی‌های مهم تصاویر را شناسایی کنند. CNN ها با تقلید از نحوه پردازش اطلاعات در مغز انسان، به شناسایی الگوها و ویژگی‌های خاص تصاویر می‌پردازند.

۲. کاربردهای الگوریتم CNN 📸🧠
- تشخیص تصویر: یکی از اصلی‌ترین کاربردهای CNN، شناسایی و دسته‌بندی تصاویر است. به‌طور مثال، در تشخیص چهره‌ها در تصاویر یا شناسایی اشیاء.
- پردازش ویدئو: در تحلیل ویدئوها، CNN ها برای شناسایی حرکت، شناسایی اشیاء متحرک و تحلیل لحظه به لحظه تصاویر کاربرد دارند.
- پزشکی: در تصاویر پزشکی مانند اسکن‌های MRI، سی‌تی‌اسکن‌ها و رادیوگرافی‌ها، برای شناسایی ناهنجاری‌ها و بیماری‌ها مانند تومورها یا بیماری‌های قلبی.
- خودروهای خودران: در صنعت خودروهای خودران برای تشخیص موانع، علائم رانندگی، مسیرها و شناسایی عابران پیاده.

۳. چرا از CNN استفاده می‌کنیم؟
در مقایسه با سایر الگوریتم‌ها، CNN‌ها برای پردازش تصاویر بسیار کارآمدتر هستند زیرا خود به‌طور خودکار ویژگی‌های تصاویر را استخراج و شناسایی می‌کنند. این ویژگی به‌ویژه در پردازش داده‌های پیچیده و حجیم مانند تصاویر پزشکی یا ویدئوها مفید است. علاوه بر این، به دلیل استفاده از ساختار لایه‌ای، CNN ها قادرند اطلاعات را به‌طور دقیق و با سرعت بالا پردازش کنند.

۴. مزایای CNN 🏆
- دقت بالا: توانایی شناسایی دقیق ویژگی‌ها و الگوهای پیچیده در تصاویر.
- کاهش نیاز به پردازش دستی: برخلاف دیگر الگوریتم‌ها که نیاز به استخراج ویژگی‌های دستی دارند، CNN خود به‌طور اتوماتیک ویژگی‌ها را استخراج می‌کند.
- مقیاس‌پذیری: با افزایش حجم داده‌ها، عملکرد CNN‌ها به خوبی مقیاس‌پذیر است و می‌توانند در تحلیل داده‌های بزرگ به‌خوبی عمل کنند.
- زمان اجرا سریعتر: به‌دلیل استفاده از فیلترهای کانولوشن و تکنیک‌های مختلف مانند pooling، این شبکه‌ها قادر به پردازش سریعتر تصاویر هستند.

این‌ها تنها بخشی از کاربردها و مزایای شبکه‌های عصبی کانولوشنی هستند. در قسمت‌های بعدی، با نحوه پیاده‌سازی CNN در پایتون آشنا خواهیم شد.



برای دریافت آموزش‌های بیشتر و پیاده‌سازی کامل CNN در پایتون، به کانال تلگرام ما بپیوندید! 💬
🔗 [لینک کانال تلگرام]

#AI #DeepLearning #CNN #Python
پارت ۳: پیاده‌سازی شبکه عصبی کانولوشنی (CNN) در پایتون با استفاده از Keras 🖥️🚀

در این قسمت، به نحوه پیاده‌سازی شبکه عصبی کانولوشنی (CNN) در پایتون با استفاده از کتابخانه Keras خواهیم پرداخت. Keras یک کتابخانه قدرتمند و کاربرپسند است که برای ساخت و آموزش مدل‌های یادگیری عمیق استفاده می‌شود.

۱. آماده‌سازی محیط کاری 🧑‍💻
قبل از شروع به کدنویسی، ابتدا باید کتابخانه‌های مورد نیاز را نصب کنیم. اگر Keras و TensorFlow را هنوز نصب نکردید، از دستورات زیر استفاده کنید:

pip install tensorflow

پس از نصب، می‌توانید از Keras برای ساخت مدل CNN استفاده کنید.

۲. ساختار مدل CNN در Keras 🔧
در اینجا ساختار یک مدل CNN ساده با استفاده از Keras را توضیح می‌دهیم:

۲.۱. وارد کردن کتابخانه‌ها
ابتدا باید کتابخانه‌های مورد نیاز را وارد کنیم:

import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Conv2D, MaxPooling2D, Flatten, Dense

۲.۲. ساخت مدل
حالا یک مدل ساده CNN ایجاد می‌کنیم که شامل لایه‌های کانولوشن، پولوینگ و کاملاً متصل است:

# ساخت مدل Sequential
model = Sequential()

# لایه کانولوشن اول
model.add(Conv2D(32, (3, 3), activation='relu', input_shape=(64, 64, 3)))

# لایه پولوینگ اول
model.add(MaxPooling2D(pool_size=(2, 2)))

# لایه کانولوشن دوم
model.add(Conv2D(64, (3, 3), activation='relu'))

# لایه پولوینگ دوم
model.add(MaxPooling2D(pool_size=(2, 2)))

# لایه فلتن (Flatten) برای تبدیل داده‌های دوبعدی به یک‌بعدی
model.add(Flatten())

# لایه کاملاً متصل اول
model.add(Dense(128, activation='relu'))

# لایه خروجی (برای دسته‌بندی)
model.add(Dense(10, activation='softmax')) # فرض بر اینکه 10 کلاس داریم

۲.۳. کامپایل مدل
پس از ساخت مدل، باید آن را کامپایل کنیم. در این مرحله، الگوریتم بهینه‌سازی و معیار ارزیابی انتخاب می‌شود:

model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])

۳. آموزش مدل CNN 📈
حالا که مدل ساخته و کامپایل شد، می‌توانیم آن را با داده‌های خود آموزش دهیم. فرض کنید که داده‌های شما در دو متغیر X_train (ویژگی‌ها) و y_train (برچسب‌ها) ذخیره شده است:

model.fit(X_train, y_train, epochs=10, batch_size=32)

این دستور مدل را برای ۱۰ دوره آموزش می‌دهد و در هر دوره، داده‌ها را به صورت بچ‌های ۳۲تایی وارد شبکه می‌کند.

۴. ارزیابی مدل 📊
پس از آموزش مدل، می‌توانیم آن را با داده‌های آزمایشی ارزیابی کنیم تا دقت مدل را بسنجیم:

test_loss, test_acc = model.evaluate(X_test, y_test)
print(f"Test Accuracy: {test_acc}")

۵. استفاده از مدل برای پیش‌بینی 🧩
در نهایت، برای پیش‌بینی یک تصویر جدید از مدل استفاده می‌کنیم:

predictions = model.predict(new_image)

این دستور احتمال‌های پیش‌بینی شده برای کلاس‌های مختلف را برمی‌گرداند.

۶. نتیجه‌گیری
در این قسمت، با پیاده‌سازی یک مدل ساده CNN در پایتون آشنا شدیم. در قسمت‌های بعدی، می‌توانید به موارد پیشرفته‌تر مانند تنظیمات بهینه‌سازی و تکنیک‌های افزایش دقت مدل بپردازید.



برای دریافت آموزش‌های بیشتر در زمینه یادگیری عمیق و پیاده‌سازی مدل‌های پیشرفته‌تر CNN، به کانال تلگرام ما بپیوندید! 💬
🔗 [لینک کانال ]

#DeepLearning #CNN #Python #Keras
1
مدیریت خودکار حافظه در پایتون 🧠💡

در پایتون، مدیریت حافظه به‌صورت خودکار انجام می‌شود. یعنی برخلاف زبان‌های سطح پایین مثل C و C++، نیازی به تخصیص یا آزادسازی دستی حافظه نیست و این کار به لطف سیستم مدیریت حافظه خودکار انجام می‌شود. این سیستم شامل شمارش ارجاعات و جمع‌آوری زباله‌ها می‌باشد. بیایید به‌صورت کامل این دو مکانیزم را بررسی کنیم:



🔹 بخش اول: شمارش ارجاعات (Reference Counting)
پایتون از شمارش ارجاعات برای مدیریت حافظه استفاده می‌کند. هر شی در پایتون دارای یک شمارشگر است که تعداد ارجاعات به آن شی را نشان می‌دهد. وقتی مقدار شمارش ارجاعات به صفر برسد، یعنی دیگر هیچ بخشی از برنامه به آن شی نیاز ندارد و پایتون می‌تواند حافظه آن را آزاد کند.

چطور شمارش ارجاعات کار می‌کند؟
- هر زمان که یک متغیر به شی‌ای اشاره می‌کند، شمارش ارجاعات آن شی افزایش می‌یابد.
- وقتی ارجاعی حذف می‌شود، شمارش ارجاعات کاهش می‌یابد.
- زمانی که شمارش به صفر برسد، پایتون حافظه را آزاد می‌کند.

مثال:
a = [1, 2, 3]
b = a # شمارش ارجاعات به شی لیست افزایش می‌یابد
del a # شمارش ارجاعات کاهش می‌یابد

مزیت‌ها:
- *سریع و کارآمد*: شمارش ارجاعات بسیار سریع است و به‌صورت همزمان با اجرای برنامه انجام می‌شود.

چالش‌ها:
- *حلقه‌های مرجع*: اگر دو یا چند شی به صورت چرخه‌ای به یکدیگر ارجاع دهند، ممکن است باعث شود که حافظه هرگز آزاد نشود؛ چون شمارش ارجاعات آن‌ها هیچ وقت به صفر نمی‌رسد.



🔹 بخش دوم: جمع‌آوری زباله‌ها (Garbage Collection)
پایتون از یک سیستم جمع‌آوری زباله‌های دورانی برای پاکسازی حافظه اشیاء بدون ارجاع استفاده می‌کند که شمارش ارجاعات به تنهایی قادر به آزادسازی آن‌ها نیست.

چطور جمع‌آوری زباله‌ها کار می‌کند؟
- حلقه‌های مرجع: برای حل مشکل حلقه‌های مرجع، پایتون از جمع‌آوری زباله‌ها استفاده می‌کند. این مکانیزم دوره‌ای اجرا شده و حلقه‌های ارجاعی را شناسایی و آزاد می‌کند.
- ماژول gc: پایتون از ماژول داخلی gc برای اجرای جمع‌آوری زباله استفاده می‌کند. این ماژول به‌طور خودکار در پس‌زمینه کار می‌کند.

مثال: اجرای دستی جمع‌آوری زباله‌ها
import gc

gc.collect() # اجرای دستی جمع‌آوری زباله

مزیت‌ها:
- *حذف حلقه‌های مرجع*: این مکانیزم باعث می‌شود که حافظه اشیائی که در حلقه‌های مرجع هستند آزاد شود.



🔹 بهینه‌سازی حافظه: بهترین تمرین‌ها
برای بهینه‌سازی استفاده از حافظه، این نکات را در نظر بگیرید:

1. پاکسازی متغیرهای غیرضروری: متغیرهایی که دیگر نیازی به آن‌ها ندارید را با del حذف کنید تا شمارش ارجاعات کاهش یابد.
2. کپی‌های غیرضروری را حذف کنید: از کپی‌های سطحی و عمیق تنها در مواقع نیاز استفاده کنید.
3. ماژول gc: می‌توانید در برنامه‌های طولانی‌مدت و پیچیده، با gc.collect() حافظه را بهینه کنید.
4. Weak References: در مواقعی که نیازی به جلوگیری از جمع‌آوری زباله ندارید، از weak referenceها استفاده کنید.



🔹 جمع‌بندی 📜
مدیریت خودکار حافظه در پایتون به لطف شمارش ارجاعات و جمع‌آوری زباله‌ها انجام می‌شود. این سیستم به شما اجازه می‌دهد که بدون نگرانی از مدیریت دستی حافظه، برنامه‌هایی قابل اعتماد و بهینه بسازید. به کمک نکات بالا و ابزارهایی مثل gc می‌توانید مدیریت حافظه را بهتر درک کرده و از آن بهینه‌تر استفاده کنید.


برای آموزش‌های بیشتر و مباحث حرفه‌ای‌تر برنامه‌نویسی، به کانال ما بپیوندید 📢
🔗 [لینک کانال تلگرام]

#PythonMemory #MemoryManagement #GarbageCollection #Python
1