Грокаем C++
9.36K subscribers
45 photos
1 video
3 files
567 links
Два сеньора C++ - Владимир и Денис - отныне ваши гиды в этом дремучем мире плюсов.

По всем вопросам (+ реклама) @ninjatelegramm

Менеджер: @Spiral_Yuri
Реклама: https://telega.in/c/grokaemcpp
Мы на TGstat: https://tgstat.ru/channel/@grokaemcpp/stat
Download Telegram
Единица трансляции

В недавнем прошлом на канале было много линковочной тематики. Соответственно это требует частого упоминания термина "единица трансляции" aka translation unit aka юнит. На канале много не нюхавшего прода народа, поэтому пришла в голову идея закрыть этот гештальт.

Вот вы изучаете плюсы. Долго и упорно. И сделали свой первый нетривиальный проект. И бежите радостный показывать его маме со словами: "Мама! Смотри, какую я программу написал.". И показываете ей, как ваши условные крестики-нолики работают. Это вы запустили исполняемый файл, который является результатом превращения вашего кода на с++ в машинный код. Но каким образом все многообразие файлов собирается в одну сущность? Как они между собой взаимодействуют для этого?

В рамках культуры разработки на С++ есть 2 принципиальных вида файлов: headers(заголовочные файлы)(.h|.hpp) и sources(файлы реализации)(.cxx|.cpp). Первые обычно предназначены для помещения в них сущностей, которые будут широко(или потенциально широко) использоваться в проекте. Вторые уже конкретно реализуют поведение этих сущностей. Ответ на вопросы: "Зачем такое разделение в принципе есть?" и "Зачем мы пишем множество файлов реализации?"- заслуживают отдельных постов. Просто примем за данность всем известный факт существования двух видов файлов.

Но на вход компилятора попадает только один тип файлов - sources(не будем касаться precompiled headers и сильно усложнять разговор). На самом деле компилятора может сожрать любой подходящий файл, просто так принято, что это .cpp файлы.

Стандартный source файл состоит из кучи заинклюженых заголовочников, возможно еще несколько видов директив препроцессора, типа #ifdef или #define и прочего, ну и, собственно, нашего кода. Когда такой файл пожирает компилятор, на самом деле первым в работу вступает препроцессор. Это такой предварительный обработчик файлов с кодом. В С и С++ есть несколько директив препроцессора, которые предназначены именно для этого обработчика. Он оперирует в основном текстом программы и фактически делает текстовые манипуляции. Например, директива #include"something.hpp" заменяется на полный текст файла something.hpp. Директива #define MAXARRAYSIZE 10 обозначает, что во всем файле строку MAXARRAYSIZE нужно заменить на 10. Причем 10 это будет прям строка в файле, это надо учитывать. Никакой проверки типов на этом этапе нет.

И вот файл, который получается после обработки исходника препроцессором называется единицей трансляции. То есть это базовый элемент компиляции С++ программы. Компилятор обрабатывает все единицы трансляции, превращая их в объектные файлы. И уже линкер собирает все эти объектные файлы в одну программу.

То есть и вправду не очень корректно говорить, что компилируются цппшники. Это делают все-таки единицы трансляции. Но я не оч понимаю людей, которые хейтят других за это, потому что просто культурой принято файлы реализации называть .cpp. А то, что там есть препроцессор - это и так понятно. Это понимает почти любой, кто писал #include <iostream>, а то есть почти все. Я уж преувеличиваю, но вы поняли мою мысль.

Divide et impera. Stay cool.

#compiler #cppcore
🔥15👍53
static_cast

В предыдущих статьях мы несколько раз упоминали оператор static_cast, поэтому мы решили затронуть еще и тему приведения типов. По мере развития серии, рассмотрим каждый из них, а завершим разбором C-style cast.

Исходя из своих наблюдений, наиболее востребованным оператором приведения является static_cast, т.к. в основном большинство приходится на преобразование между совместимыми друг с другом типами:
int32_t value_i32 = 42;
int64_t value_i64 = static_cast<int64_t>(value_i32);

float value_f32 = 42.314;
int16_t value_i16 = static_cast<int16_t>(value_f32);

Оператор static_cast так же проверяет корректность выполняемого приведения. Например, запрещает приведение указателя к значению:
// error: invalid 'static_cast' from type 'int*' to type 'int'
static_cast<int>(&value);

Конечно, некоторые смысловые ошибки нельзя поймать, ведь с точки зрения типа, все хорошо. Например, приведение значения к enum class может привести к непредвиденным сценариям 🤭:
enum class action_e : int { RUN = 0, FIGHT = 1 };

// Should I run or fight?
action_e action = static_cast<action_e>(2);

Лучше бы их все таки дополнять еще debug-only assert или вообще условным ветвлением.

Правила приведения для фундаментальных (встроенных) типов в C++ определены заранее, а вот для пользовательских классов можно определить свои собственные преобразования с помощью оператора приведения к типу: operator Type():
class specific_error_t
{
...
// Оператор приведение к типу `bool`
operator bool() const
{
return m_code < 0;
}
...
};

Эта ручка будет дергаться при явном и неявном приведении типов в живом примере 1:
specific_error_t internal_code = -1;

// Приведение `internal_code` к типу `bool`
bool has_internal_code = static_cast<bool>(internal_code);

Один из неочевидных способов применения этого оператора является приведение к типу void. Казалось бы, зачем? Но это помогает подавить предупреждение компилятора о неиспользуемой переменной / не присвоенном значении:
void foo()
{
    int result = read_and_do_something();

#ifdef DEBUG
    // Debug build check only
    assert(result == 0);
#endif

    static_cast<void>(result);
}


Если такое предупреждение появляется, то вероятно, что что-то вы все таки упускаете в своем коде. Но иногда такие ситуации встречаются, когда полезная нагрузка от вашего действия есть, а предупреждение не к месту. Например, в следствие какой-нибудь препроцессорной директивы. Напоминаем, что в C++17 так же есть атрибут [[maybe_unused]], который решает эту проблему.

Так же static_cast позволяет выполнить приведение к типу родительского класса (upcasting) и к типу наследников (downcasting) в рамках одной иерархии классов:
Child *pointer   = new Child();

// Upcasting
Base *base_ptr = static_cast<Base*>(pointer);

// Downcasting
Child *child_ptr = static_cast<Child*>(base_ptr);

Важным моментом является тот факт, что static_cast не может обеспечить проверку корректности совершенного преобразования к наследнику (downcasting)! Если наследник выбран неправильно и вы допустили ошибку преобразования к другому типу, то вам все равно дадут скомпилироваться: живой пример 2. У компилятора действительно не хватает информации, чтобы это проверить на этапе компиляции.

Разберем эту тему подробнее, когда дойдем до динамического полиморфизма
👍2316🔥32
Директивы ifdef, ifndef, if
#новичкам

Иногда код, который мы пишем, должен зависеть от каких-то внешних параметров. Например, неплохо было бы довалять дебажный вывод при дебажной сборке. Или нам нужно написать кусочек платформоспецифичного кода и конкретная платформа передается нам наружными параметрами. Разные в общем бывают ситуации. Получается нам нужен какой-то механизм, который может проверять эти внешние параметры и в зависимости от их значений включать или выключать нужный кусок кода. Эту задачу можно решать по-разному. Сегодня мы обсудим доисторический способ, который, несмотря на свой почтенный возраст и опасность применения, активно используется в существующих проектах.

Этот способ - использование директив препроцессора #ifdef, #ifndef, #if. Все три - условные конструкции. Первая смотрит, определен ли в коде какой-то макрос. Если да, то делаем одни действия, если нет - другие. Второй наоборот, входит в первую ветку условия, если макрос не определен, и входит во вторую, если определен. Директива #if проверяет какое-то условие, ничего необычного. Все три директивы могут иметь как полные формы(с веткой в случае если условие ложно), так и неполные(без "else").

И вот в чем их прикол. Препроцессор работает с текстом программы. И он просто удаляет из этого текста ненужную ветку так, что до компиляции она даже не доходит, а нужная ветка как раз и подвергается обработке компилятором.

Например, у нас есть какой-то платформоспецифичный участок кода. Пусть это будет низкоуровневая оптимизация скалярного произведения на векторных инструкциях. Они разные для интеловских процессоров и для армов. Код может выглядеть примерно так:

int DotProduct(const std::vector<int>& vec1, const std::vector<int>& vec2)
{
int result = 0;
#if CPU_TYPE == 0
// mmx|sse|avx code
#elif CPU_TYPE == 1
// arm neon code
#else
static_assert(0, "NO CPU_TYPE IS SPECIFIED");
#endif
return result;
}


Если каждое значение CPU_TYPE включает нужную ветку кода и убирает из текста программы все остальные.

Если мы хотим оптимизировать только под интеловские процессоры, то можем написать чуть проще:

int DotProduct(const std::vector<int>& vec1, const std::vector<int>& vec2)
{
int result = 0;
#ifdef OPTIMIZATION_ON
// mmx|sse|avx code
#else
for (int i = 0; i < vec1.size(); ++i)
result += vec1[i] * vec2[i];
#endif
return result;
}


(Все примеры - учебные, все совпадения с реальным кодом - случайны, не повторяйте код в домашних условиях). Здесь мы проверяем директивой ifdef, определен ли макрос OPTIMIZATION_ON, сигнализирующий что нужно использовать векторные инструкции. Если да, то ключаем в текст программы оптимизированный код. Если нет - обычный.

Можно еще кучу примеров и приложений этим директивам привести. Но я хотел подчеркнуть именно вот эту особенность, что мы можем добавлять или выбрасывать определенные участки кода в зависимости от внешних параметров.

Широко известно, что такой способ не только устарел, но еще и опасен. Завтра посмотрим, чем конкретно.

Choose the right path. Stay cool.

#compiler
🔥25👍94😁41
Рекурсивные лямбды. Хакаем систему
#опытным

Конечно же вчерашний пост был первоапрельской шуткой. Не волнуйтесь, мы вас не бросим и без контента не оставим.

Поэтому возвращаемся к нашим баранам. То есть рекурсивным лямбдам. В прошлый раз мы узнали, что лямбды не могут захватывать себя, поэтому не могут быть рекурсивными. Сегодня поговорим о способах, как обойти эту проблему.

1️⃣ Вместо использования auto, явно приводим лямбду к std::function. Тогда компилятор будет знать точный тип функционального объекта и сможет его захватить в лямбду:

std::function<int(int)> factorial = [&factorial](int n) -> int { 
return (n) ? n * factorial(n-1) : 1;
};


Но использование std::function очень затратно по всем критериям. Компиляция ощутимо замедляется, асма намного больше становится, и std::function обычно сильно медленнее обычных функций и лямбд. А еще и динамические аллокации.

Поэтому не самый хороший способ.

2️⃣ Используем С++14 generic лямбды:

auto factorial = [](int n, auto&& factorial) {
if (n <= 1) return n;
return n * factorial(n - 1, factorial);
};
auto i = factorial(7, factorial);


Тут надо разобраться. Мы не могли захватывать лямбду в себя, потому что мы не знали ее тип. Сейчас мы тоже не знаем ее тип, но нам это и не нужно, потому что мы используем дженерик лямбду, которая под капотом превращается в замыкание с шаблонным оператором(). Благодаря cppinsides мы можем заглянуть под капот:

class __lambda_24_20
{
public:
template<class type_parameter_0_0>
inline /*constexpr */ auto operator()(int n, type_parameter_0_0 && factorial) const
{
if(n <= 1) {
return n;
}

return n * factorial(n - 1, factorial);
}

#ifdef INSIGHTS_USE_TEMPLATE
template<>
inline /*constexpr */ int operator()<__lambda_24_20 &>(int n, __lambda_24_20 & factorial) const
{
if(n <= 1) {
return n;
}

return n * factorial.operator()(n - 1, factorial);
}
#endif

};


У класса есть шаблонный оператор, но это полностью завершенный тип. После объявления лямбды компилятор уже знает конкретный тип замыкания и может инстанцировать с ним шаблонный метод.

Форма использования такой лямбды оставляет желать лучшего, потому что нам нужно постоянно передавать ее в качестве параметра. Полечить это, как всегда, можно введением дополнительного уровня индирекции. Обернем лямбду в лямбду!

auto factorial_impl = [](int n, auto&& factorial) {
if (n <= 1) return n;
return n * factorial(n - 1, factorial);
};
auto factorial = [&](int n) { return factorial_impl(n, factorial_impl); };
auto i = factorial(7);


Теперь не нужно передавать доп параметры.

3️⃣ Если лямбда ничего не захватывает, то ее можно приводить к указателю на функцию. На этом основан следующий метод:

using factorial_t = int(*)(int);
static factorial_t factorial = [](int n) {
if (n <= 1) return n;
return n * factorial(n - 1);
};
auto i = factorial(7);


Статическая локальная переменная видна внутри лямбды, поэтому такой трюк прокатывает.

Если у вас есть какие-то еще подобные приемы - пишите в комменты.

Но это все какие-то обходные пути. Хочется по-настоящему рекурсивные лямбды.

И их есть у меня!

Об этом в следующий раз.

Always find a way out. Stay cool.

#template #cppcore #cpp11 #cpp14
38🔥17👍12
std::midpoint
#новичкам

Простая задача - получить среднее арифметическое двух чисел. Берем и пишем, как на уроке математики:

int avg(int a, int b) {
return (a + b) / 2;
}


И дело в шляпе. Или нет?

На самом деле это некорректная реализация, потому что не учитывает переполнение целых чисел. Если сумма (a + b) будет больше, чем помещается в int, то произойдет переполнение, а вы в итоге получите неправильный ответ.

Что же делать?

Если несколько способов обойти эту проблему.

❗️ Складываем половинки двух чисел:

int avg(int a, int b) {
return a/2 + b/2;
}

Даже если a и b - максимальные инты, все будет гуд. Проблему с переполнением решили.

Однако здесь появляются проблемы с двойным отбрасыванием остатка от деления. В случае передачи двух нечетных чисел, результат будет неверный:

avg(5, 7) = 5 что неверно


💥 Первое число складываем с разницей двух чисел:

int avg(int a, int b) {
return a > b ? b + (a - b) / 2 : a + (b - a) / 2;
}


Если раскрыть скобки, то выходит тоже самое.
И проблем с корректностью нет.

⚡️ std::midpoint. С++20 мы наконец получили стандартную функцию, считающую среднее арифметическое двух объектов. Давайте посмотрим на ее реализацию из gcc:

 // midpoint
#ifdef __cpp_lib_interpolate // C++ >= 20
template<typename _Tp>
constexpr
enable_if_t<__and_v<is_arithmetic<_Tp>, is_same<remove_cv_t<_Tp>, _Tp>,
_not<is_same<_Tp, bool>>>,
_Tp>
midpoint(_Tp __a, _Tp __b) noexcept
{
if constexpr (is_integral_v<_Tp>)
{
using _Up = make_unsigned_t<_Tp>;

int __k = 1;
_Up __m = __a;
_Up __M = __b;
if (__a > __b)
{
__k = -1;
__m = __b;
__M = __a;
}
return __a + __k * _Tp(_Up(__M - __m) / 2);
}
else // is_floating
{
constexpr _Tp __lo = numeric_limits<_Tp>::min() * 2;
constexpr _Tp __hi = numeric_limits<_Tp>::max() / 2;
const _Tp __abs_a = __a < 0 ? -__a : __a;
const _Tp __abs_b = __b < 0 ? -__b : __b;
if (__abs_a <= __hi && __abs_b <= __hi) [[likely]]
return (__a + __b) / 2; // always correctly rounded
if (__abs_a < __lo) // not safe to halve __a
return __a + __b/2;
if (__abs_b < __lo) // not safe to halve __b
return __a/2 + __b;
return __a/2 + __b/2; // otherwise correctly rounded
}
}

template<typename _Tp>
constexpr enable_if_t<is_object_v<_Tp>, _Tp*>
midpoint(_Tp* __a, _Tp* __b) noexcept
{
static_assert( sizeof(_Tp) != 0, "type must be complete" );
return __a + (__b - __a) / 2;
}
#endif // __cpp_lib_interpolate


Не будем вдаваться в подробности, однако стоит заметить, что стандартная функция использует оба подхода в разных ситуациях. Для целых чисел используется второй подход с вычитанием, а для чисел с плавающей точкой - с располовиниваем(так как не теряем остаток) и, даже, оригинальный подход, когда нет риска переполнения.

Да, может быть эта реализация не такая эффективная, зато гарантировано безопасная. Стандарт об этом явно говорит.

К тому же std::midpoint можно использовать для реализации бинарного поиска при нахождении индекса серединного элемента последовательности. Или для реализации алгоритмов «разделяй и властвуй», когда нужно найти индекс элемента, по которому будут разбивать последовательность пополам

В общем, если вы не упарываетесь по перфу, то она станет вашим верным другом.

Stay safe. Stay cool.

#cpp20 #cppcore
35🔥10👍8😁3
Почему еще важен std::forward
#опытным

Подписчик @Ivaneo предложил новую рубрику #ЧЗХ, в рамках которой мы будем рассматривать мозголомательные примеры кода и пытаться объяснить, почему они работают так криво.

Также спасибо ему за предоставление следующего примера:

#include <iostream>

void bar(float&& x) { std::cout << "float " << x << "\n"; }
void bar(int&& x) { std::cout << "int " << x << "\n"; }

void foo(auto&& v) { bar(v); }

int main() {
foo(1);
foo(2.0f);
}


Как думаете, что выведется на консоль? Подумайте пару секунд.

Ну нормальный человек ответит:

int 1
float 2


Однако командная строка вам выдаст следующее:

float 1
int 2


Если не верите, по посмотрите в годболте. И можете уже сейчас написать в комментах: "ЧЗХ", "WTF", "WAT" и прочее.

А нам пораразбирацца.

Тут используется auto в аргументах функции, значит эта функция неявно шаблонная. Посмотрим, что нам выдаст cppinsights по этому коду:

#ifdef INSIGHTS_USE_TEMPLATE
template<>
void foo<int>(int && v)
{
bar(static_cast<float>(v));
}
#endif


#ifdef INSIGHTS_USE_TEMPLATE
template<>
void foo<float>(float && v)
{
bar(static_cast<int>(v));
}
#endif


Просто прекрасно. Какого черта компилятор кастит переменные к противоположным типам?

Первое, что важно понимать: внутри функции foo переменная v - это уже lvalue, так как имеет имя. Значит просто так вызвать перегрузки для правых ссылок он не может.

Но у компилятора в кармане есть стандартные преобразования, которые и идут в ход, когда нет подходящих перегрузок. Обычно это неявные преобразования из одного типа в другой. Не преобразования из одного типа ссылочности в другой тип ссылочности, а прям в другие типы данных.

То есть происходит следующее: компилятор понимает, что подходящей перегрузки нет, поэтому начинает применять стандартные преобразования в другие типы. Любой каст дает временный объект. А временный объект типа int легко биндится к float&&, как и временный объект float легко биндится к int&&.

Вот и получается обмен вызовами.

Чтобы такого не происходило, применяйте перед сном std::forward. Если есть контекст вывода типов, то он помогает правильно передавать категорию выражения объекта во внутренние вызовы.

#include <iostream>

void bar(float&& x) { std::cout << "float " << x << "\n"; }
void bar(int&& x) { std::cout << "int " << x << "\n"; }

void foo(auto&& v) { bar(std::forward<decltype(v)>(v)); }

int main() {
foo(1);
foo(2.0f);
}


В этом случае вывод будет ожидаемым.

Be amazed. Stay cool.

#cppcore #cpp11 #template
🔥47🤯308👍7❤‍🔥2