Forwarded from DevOps Labdon
🔵 عنوان مقاله
Cost-optimized ml on production: autoscaling GPU nodes on Kubernetes to zero using keda
🟢 خلاصه مقاله:
این آموزش نشان میدهد چگونه با استفاده از Kubernetes و KEDA ظرفیت GPU را بر اساس طول صف پیامها بهصورت خودکار تا صفر کاهش دهیم و هزینه اجرای ML در محیط تولید را کم کنیم. معماری مبتنی بر یک message queue (مثل Kafka، RabbitMQ یا AWS SQS) است و KEDA با ScaledObject تعداد پادهای مصرفکننده GPU را نسبت به backlog تنظیم میکند (minReplicaCount=0). با فعالبودن Cluster Autoscaler و یک GPU node pool با حداقل اندازه صفر، نودهای GPU فقط هنگام نیاز ایجاد و سپس آزاد میشوند. نکات کلیدی شامل تنظیم nodeSelector/tolerations، درخواست nvidia.com/gpu، کنترل pollingInterval/cooldownPeriod، کاهش cold start با pre-pull و پایش با Prometheus/Grafana است. نتیجه: پرداخت هزینه GPU فقط هنگام وجود کار، همراه با حفظ قابلیت اطمینان و کنترل تأخیر.
#Kubernetes #KEDA #GPU #MLOps #Autoscaling #CostOptimization #MessageQueue #ProductionML
🟣لینک مقاله:
https://ku.bz/Zhb9q3BZx
➖➖➖➖➖➖➖➖
👑 @DevOps_Labdon
Cost-optimized ml on production: autoscaling GPU nodes on Kubernetes to zero using keda
🟢 خلاصه مقاله:
این آموزش نشان میدهد چگونه با استفاده از Kubernetes و KEDA ظرفیت GPU را بر اساس طول صف پیامها بهصورت خودکار تا صفر کاهش دهیم و هزینه اجرای ML در محیط تولید را کم کنیم. معماری مبتنی بر یک message queue (مثل Kafka، RabbitMQ یا AWS SQS) است و KEDA با ScaledObject تعداد پادهای مصرفکننده GPU را نسبت به backlog تنظیم میکند (minReplicaCount=0). با فعالبودن Cluster Autoscaler و یک GPU node pool با حداقل اندازه صفر، نودهای GPU فقط هنگام نیاز ایجاد و سپس آزاد میشوند. نکات کلیدی شامل تنظیم nodeSelector/tolerations، درخواست nvidia.com/gpu، کنترل pollingInterval/cooldownPeriod، کاهش cold start با pre-pull و پایش با Prometheus/Grafana است. نتیجه: پرداخت هزینه GPU فقط هنگام وجود کار، همراه با حفظ قابلیت اطمینان و کنترل تأخیر.
#Kubernetes #KEDA #GPU #MLOps #Autoscaling #CostOptimization #MessageQueue #ProductionML
🟣لینک مقاله:
https://ku.bz/Zhb9q3BZx
➖➖➖➖➖➖➖➖
👑 @DevOps_Labdon
❤2