Наконец-то математики всерьёз взялись за машинное обучение.
Представьте, что у вас есть сайт, который посещает большая популяция людей X. Вы хотите разместить на сайте рекламный баннер из множества A. Каждый баннер из этого множества соответствует какому-то подмножеству посетителей FA ⊆ X. Каждый посетитель может принадлежать нескольким подмножествам: например, он может быть программистом, любителем котиков и читателем фантастики. У вас есть набор тренировочных данных, на которых вы обучаете своей ML-оракул. Ваша задача найти такой баннер, который удовлетворяет вкусам большинства пользователей.
Так вот, группа математиков, опираясь на теорему Гёделя о неполноте, доказали, что эту невозможно доказать или опровергнуть саму возможность решения этой задачи. Это фундаментальное ограничение, которое нельзя обойти, используя общепринятые базовые аксиомы математики.
Конечно, не всё так грустно, даже если мы не знаем можно ли решить задачу в принципе. Очень часто достаточно найти подходящую эвристику, чтобы получить не оптимальный, но достаточно хороший ответ. Однако это первый случай, когда мы упёрлись в доказано непреодолимую машинным обучением стену.
#математика #ML #интеллект #доказательство #IT
https://nplus1.ru/news/2019/01/21/machine-not-always-learning
Представьте, что у вас есть сайт, который посещает большая популяция людей X. Вы хотите разместить на сайте рекламный баннер из множества A. Каждый баннер из этого множества соответствует какому-то подмножеству посетителей FA ⊆ X. Каждый посетитель может принадлежать нескольким подмножествам: например, он может быть программистом, любителем котиков и читателем фантастики. У вас есть набор тренировочных данных, на которых вы обучаете своей ML-оракул. Ваша задача найти такой баннер, который удовлетворяет вкусам большинства пользователей.
Так вот, группа математиков, опираясь на теорему Гёделя о неполноте, доказали, что эту невозможно доказать или опровергнуть саму возможность решения этой задачи. Это фундаментальное ограничение, которое нельзя обойти, используя общепринятые базовые аксиомы математики.
Конечно, не всё так грустно, даже если мы не знаем можно ли решить задачу в принципе. Очень часто достаточно найти подходящую эвристику, чтобы получить не оптимальный, но достаточно хороший ответ. Однако это первый случай, когда мы упёрлись в доказано непреодолимую машинным обучением стену.
#математика #ML #интеллект #доказательство #IT
https://nplus1.ru/news/2019/01/21/machine-not-always-learning
nplus1.ru
Доказана неразрешимость одной из моделей машинного обучения
Математики совместно со специалистами в области компьютерных наук доказали неразрешимость одной из моделей машинного обучения. Соответствующая статья опубликована в журнале Nature Machine Intelligence.