ForkLog AI
11.2K subscribers
1.56K photos
269 videos
12 files
5.14K links
Культовый журнал об искусственном интеллекте, нейронках и машинном обучении.


Наши эксперименты с нейронными сетями: https://www.tiktok.com/@forklogai.

Реклама на ForkLog: https://forklog.com/advertisement/
Download Telegram
🤖 Ученые из MIT представили роботов, способных самостоятельно собираться в более крупные конструкции.

Устройства состоят из цепочек соединенных между собой вокселей. Они могут захватывать и прикреплять дополнительные субъединицы перед перемещением по сетке для дальнейшей сборки.

☝️ Однако команда признает, что разработка полностью автономного самостроящегося робота «займет годы».

https://forklog.com/news/issledovateli-mit-pokazali-umnyh-samokonstruiruemyh-robotov

#MIT #роботы
💬 Исследователи MIT разработали ИИ-модель, способную предсказывать трудности с пониманием языка.

Система базируется на генераторе текста GPT-2, который ученые модифицировали компонентом, имитирующим ограничения человеческой памяти. Также они использовали методы машинного обучения для оптимизации использования этого ресурса.

📝 Исследователи передали модели набор сложных предложений вроде «Отчет о том, что врач, которому не доверял адвокат, раздражал пациента, было неожиданным». Затем они заменили некоторые начальные существительные другими словами. По данным экспертов, иногда это упрощало «понимание» текста ИИ.

После этого ученые провели эксперимент с респондентами, которых попросили прочесть подобные предложения. Время, требуемое им на понимание текста, совпало с прогнозами алгоритма.

🔎 Исследователи заявили, что этот проект позволит исследовать процесс обработки информации людьми.

#MIT #исследование
🚗 Исследование: бортовые компьютеры робомобилей приведут к созданию углеродного следа, сопоставимого с выбросами всех текущих датацентров.

Для этого специалисты MIT построили статистическую модель. Они смоделировали сценарии, где 1 млрд беспилотников ездят по часу в день с бортовым компьютером, потребляющим 840 Вт энергии.

🔋 Специалисты выявили, что в более чем 90% случаев, когда объем выбросов не превышал текущий показатель всех существующих датацентров, каждый робомобиль потреблял менее 1,2 кВт мощности для вычислений. Это станет возможным за счет разработки более эффективного оборудования.

#исследование #MIT
🤖 Исследователи из MIT создали робота DribbleBot, способного вести футбольный мяч по различным поверхностям.

Для тренировки системы специалисты использовали 4000 смоделированных версий устройства. Также они применили метод обучения с подкреплением.

Помимо различных датчиков исследователи оснастили робота контроллером восстановления, который позволяет устройству подняться после падения и возобновить дриблинг.

⚽️ DribbleBot умеет вести мяч по песку, гравию, траве, грязи, снегу и другим естественным ландшафтам. При этом система адаптируется к влиянию поверхностей на движение спортивного снаряда.

#MIT #роботы
🧬 Исследователи из MIT разработали две генеративные ИИ-модели для создания белков с определенными структурными особенностями.

Специалисты использовали архитектуру диффузионных алгоритмов на основе внимания. Первый работает с общими структурными свойствами протеинов, а вторая — на уровне аминокислот. Обе модели связаны с нейросетью, прогнозирующей свертывание белка.

Чтобы проверить алгоритмы, ученые ввели физически невозможные дизайны структур. В результате вместо создания нереальных белков модели генерировали наиболее близкое к синтезируемому решение.

⚙️ По словам исследователей, полученные с помощью ИИ последовательности можно использовать для разработки материалов с определенными механическими свойствами, такими как жесткость или эластичность.

#исследование #MIT
This media is not supported in your browser
VIEW IN TELEGRAM
👀 Исследователи из MIT и Университета Райса разработали технику компьютерного зрения ORCa, способную видеть объекты вне поля зрения.

Система анализирует искаженные отражения на глянцевых поверхностях, чтобы определить предметы и расстояние к ним. Например, с помощью этой технологии робокары могут по отсветам на других автомобилях выявить приближающийся транспорт на перекрестке.

ПО обрабатывает несколько изображений глянцевой поверхности под разными углами. Затем, используя машинное обучение, оно разбивает отражение объекта на отдельные пиксели. Анализируя их изменения относительно друг друга на разных картинках, ORCa способна определить форму предмета.

🔎 Также, моделируя сцену в виде так называемого 5D-поля излучения, технология оценивает направление и интенсивность световых лучей, падающих или отражающихся от каждой точки. За счет этого ORCa может установить, насколько далеко они находятся от отражающей поверхности и друг от друга.

#исследование #MIT
This media is not supported in your browser
VIEW IN TELEGRAM
🔎 Исследователи из MIT и Adobe Research разработали модель для выявления похожих материалов на изображениях.

Специалисты натренировали алгоритм машинного обучения на синтетических данных. Однако технология способна работать с ранее неизвестными реальными сценами, снятыми в помещении и вне его.

Модель умеет распознавать все пиксели определенного материала на картинке по одной выбранной пользователем точке. По словам исследователей, алгоритм эффективно работает с объектами разной формы и размеров. Он «не обманывается» тенями или условиями освещения, за счет которых вид предмета может изменится.

🎦 Алгоритм также работает с видео. Когда пользователь выберет пиксель в первом кадре, модель определит все сделанные из того же материала объекты в остальном ролике.

#исследование #MIT #Adobe
🩻 Ученые из MIT создали ИИ-модель для анализа медицинских снимков.

Tyche способна помочь врачам диагностировать рак на ранних стадиях и дает возможность исследователям разрабатывать новые варианты лечения.

https://forklog.com/?p=230569

#MIT #медицина