#Н2 #мир
Человечество делает еще один системный подход к поискам месторождений водорода - самого распространенного элемента в природе - на Земле и в Космосе.
Такой водород называют в разных странах белым или теперь вот - золотым. Суть от этого не меняется - он содержится в земной коре и зачастую является признаком наличия нефтяных и газовых (метан) месторождений.
Интересен ниже по ссылке не столько сам пост - пересказ публикации в журнале The Economist, сколько многочисленные ссылки в комментариях - о конкретных месторождениях природного водорода в Африке, Европе, Америке, Австралии. Хорошая база источников для анализа.
https://t.iss.one/hydrogen_in_russian/542
Человечество делает еще один системный подход к поискам месторождений водорода - самого распространенного элемента в природе - на Земле и в Космосе.
Такой водород называют в разных странах белым или теперь вот - золотым. Суть от этого не меняется - он содержится в земной коре и зачастую является признаком наличия нефтяных и газовых (метан) месторождений.
Интересен ниже по ссылке не столько сам пост - пересказ публикации в журнале The Economist, сколько многочисленные ссылки в комментариях - о конкретных месторождениях природного водорода в Африке, Европе, Америке, Австралии. Хорошая база источников для анализа.
https://t.iss.one/hydrogen_in_russian/542
Telegram
Hydrogen with Yury Melnikov
КАК СВЯЗАНЫ БИЛЛ ГЕЙТС, СССР И ЗОЛОТОЙ ВОДОРОД
Журнал The Economist опубликовал любопытную хайпогенную колонку про золотой водород. Интересные тезисы:
1) NREL считает (как и многие другие, см. дискуссии в этом канале год назад), что водород в свободном…
Журнал The Economist опубликовал любопытную хайпогенную колонку про золотой водород. Интересные тезисы:
1) NREL считает (как и многие другие, см. дискуссии в этом канале год назад), что водород в свободном…
#Н2 #э.э. #Австралия
Крупнейшая в мире газотурбинная электростанция, работающая на 100% водороде, будет построена в Австралии.
На ней будут установлены четыре турбины LM6000 производства GE по 50 МВт каждая.
Правительство Южной Австралии заявило, что выбрало компанию GE Vernova для поставки турбин для «крупнейшей в мире» электростанции, работающей на зеленом водороде, которая будет построена недалеко от Вайаллы (Whyalla).
GE сообщает, что поставит четыре своих турбинных блока LM6000Velox, каждый из которых оснащен турбинами LM6000 мощностью 50 МВт, которые, как ожидается, будут работать на 100% возобновляемом водороде.
Это будет первая в мире станция, использующая турбины GE, работающие исключительно на водороде.
H2 будет производиться электролизером мощностью 250 МВт с помощью солнечной и ветровой электроэнергии. Водород будет накапливаться и использоваться для выработки электроэнергии для энергосистемы Южной Австралии в периоды, когда «солнце не светит и ветер не дует».
GE говорит, что турбины LM6000, разработанные на основе авиадвигателей, очень гибки, и идеально подходят для энергосистемы с высокой долей солнца и ветра.
Сжигание водорода для выработки электроэнергии — весьма спорное решение. С точки зрения как экономики, так и экологии.
Широко распространено мнение, что зеленый водород будет необходим для генерации электроэнергии в течение длительных периодов времени, когда в системе недостаточно выработки солнечных и ветровых мощностей. Хотя турбины относительно неэффективны, их можно использовать в таких масштабах, которые будет сложно и дорого воспроизвести для генерирующих электроэнергию водородных топливных элементов.
Существуют опасения, что сжигание чистого водорода приведет к образованию большого количества оксидов азота (NOx), которые вредны для здоровья человека и действуют как косвенные парниковые газы. Впрочем, эту проблему можно смягчить с помощью технологии, аналогичной каталитическим нейтрализаторам в легковых автомобилях.
В 2023 году консорциум Hyflexpower успешно провел «первые в мире» эксплуатационные испытания работы промышленной газовой турбины Siemens SGT-400 на 100% возобновляемом водороде в Европе.
В 2021 году нефтегазовый концерн Equinor объявил, что планирует первую в мире крупную электростанцию на 100% водороде в Великобритании. Однако этот проект пока на ранней стадии.
В 2023 году в Австрии построили «первое в мире геологическое хранилище водорода». Там планируется использование газопоршневых двигателей небольшой мощности для выработки электроэнергии и тепла. RAG Austria AG, автор проекта, выбрало сжигание водорода, поскольку очистка газа для использования в топливном элементе получилась бы слишком дорогой.
RenEN.ru
Крупнейшая в мире газотурбинная электростанция, работающая на 100% водороде, будет построена в Австралии.
На ней будут установлены четыре турбины LM6000 производства GE по 50 МВт каждая.
Правительство Южной Австралии заявило, что выбрало компанию GE Vernova для поставки турбин для «крупнейшей в мире» электростанции, работающей на зеленом водороде, которая будет построена недалеко от Вайаллы (Whyalla).
GE сообщает, что поставит четыре своих турбинных блока LM6000Velox, каждый из которых оснащен турбинами LM6000 мощностью 50 МВт, которые, как ожидается, будут работать на 100% возобновляемом водороде.
Это будет первая в мире станция, использующая турбины GE, работающие исключительно на водороде.
H2 будет производиться электролизером мощностью 250 МВт с помощью солнечной и ветровой электроэнергии. Водород будет накапливаться и использоваться для выработки электроэнергии для энергосистемы Южной Австралии в периоды, когда «солнце не светит и ветер не дует».
GE говорит, что турбины LM6000, разработанные на основе авиадвигателей, очень гибки, и идеально подходят для энергосистемы с высокой долей солнца и ветра.
Сжигание водорода для выработки электроэнергии — весьма спорное решение. С точки зрения как экономики, так и экологии.
Широко распространено мнение, что зеленый водород будет необходим для генерации электроэнергии в течение длительных периодов времени, когда в системе недостаточно выработки солнечных и ветровых мощностей. Хотя турбины относительно неэффективны, их можно использовать в таких масштабах, которые будет сложно и дорого воспроизвести для генерирующих электроэнергию водородных топливных элементов.
Существуют опасения, что сжигание чистого водорода приведет к образованию большого количества оксидов азота (NOx), которые вредны для здоровья человека и действуют как косвенные парниковые газы. Впрочем, эту проблему можно смягчить с помощью технологии, аналогичной каталитическим нейтрализаторам в легковых автомобилях.
В 2023 году консорциум Hyflexpower успешно провел «первые в мире» эксплуатационные испытания работы промышленной газовой турбины Siemens SGT-400 на 100% возобновляемом водороде в Европе.
В 2021 году нефтегазовый концерн Equinor объявил, что планирует первую в мире крупную электростанцию на 100% водороде в Великобритании. Однако этот проект пока на ранней стадии.
В 2023 году в Австрии построили «первое в мире геологическое хранилище водорода». Там планируется использование газопоршневых двигателей небольшой мощности для выработки электроэнергии и тепла. RAG Austria AG, автор проекта, выбрало сжигание водорода, поскольку очистка газа для использования в топливном элементе получилась бы слишком дорогой.
RenEN.ru
Office of Hydrogen Power South Australia
Global Energy Giant GE selected as preferred supplier for Hydrogen Jobs Plan
#Н2 #Россия
В конце февраля 2024 года случились два события: президент Владимир Путин утвердил Стратегию научно-технологического развития РФ, в которой в качестве приоритета указано, что Россия должна формировать новые источники энергии. А Геологическая служба США с прогнозировала скорое начало мировой гонки по освоению природных запасов водорода. Это водород называют белым. Есть еще голубой, зеленый и оранжевый – в зависимости от способов его получения.
На водород делаются большие ставки – так, в 2021 году Минэнерго, что Россия к 2050 году будет зарабатывать от экспорта экологически чистых видов водорода до $100,2 млрд в год. Этого пока не случилось, но и 2050 год не наступил.
Способов получения водорода много: от газификации угля и паровой конверсии метана до электролиза и биохимии. Но сейчас загоорили о добыче водорода непосредственно из земных недр. В конце декабря 2023 года правительство Франции разрешило вести разведку и добычу «белого водорода», а Геологическая служба США подсчитала, что мировые запасы водорода составляют порядка 5 трлн тонн, хотя извлечь, вероятно, удастся меньше - лишь около 500 млн тонн, но даже этих объемов хватит для того, чтобы обеспечить весь мир энергией на многие годы.
В России о добыче водорода из недр еще в 2021 году говорил экономист, академик РАН Сергей Глазьев (он же - министр созданной РФ, Беларусью и Казахстаном Евразийской экономической комиссии по интеграции и макроэкономике). Глазьев предложил правительству РФ поддержать развитие соответствующих технологий. Премьер-министр Михаил Мишустин поручил проработать это предложение вице-премьеру, курирующему ТЭК, Александру Новаку и министру науки и высшего образования Валерию Фалькову. О результатах проработки не сообщалось.
https://mashnews.ru/rossiya-ne-znaet-skolko-u-nee-belogo-vodoroda.-dlya-vyiyasneniya-sobirayutsya-privlekat-ran.html
В конце февраля 2024 года случились два события: президент Владимир Путин утвердил Стратегию научно-технологического развития РФ, в которой в качестве приоритета указано, что Россия должна формировать новые источники энергии. А Геологическая служба США с прогнозировала скорое начало мировой гонки по освоению природных запасов водорода. Это водород называют белым. Есть еще голубой, зеленый и оранжевый – в зависимости от способов его получения.
На водород делаются большие ставки – так, в 2021 году Минэнерго, что Россия к 2050 году будет зарабатывать от экспорта экологически чистых видов водорода до $100,2 млрд в год. Этого пока не случилось, но и 2050 год не наступил.
Способов получения водорода много: от газификации угля и паровой конверсии метана до электролиза и биохимии. Но сейчас загоорили о добыче водорода непосредственно из земных недр. В конце декабря 2023 года правительство Франции разрешило вести разведку и добычу «белого водорода», а Геологическая служба США подсчитала, что мировые запасы водорода составляют порядка 5 трлн тонн, хотя извлечь, вероятно, удастся меньше - лишь около 500 млн тонн, но даже этих объемов хватит для того, чтобы обеспечить весь мир энергией на многие годы.
В России о добыче водорода из недр еще в 2021 году говорил экономист, академик РАН Сергей Глазьев (он же - министр созданной РФ, Беларусью и Казахстаном Евразийской экономической комиссии по интеграции и макроэкономике). Глазьев предложил правительству РФ поддержать развитие соответствующих технологий. Премьер-министр Михаил Мишустин поручил проработать это предложение вице-премьеру, курирующему ТЭК, Александру Новаку и министру науки и высшего образования Валерию Фалькову. О результатах проработки не сообщалось.
https://mashnews.ru/rossiya-ne-znaet-skolko-u-nee-belogo-vodoroda.-dlya-vyiyasneniya-sobirayutsya-privlekat-ran.html
Информационно-аналитический портал «Новости промышленности MASHNEWS»
Россия не знает, сколько у нее белого водорода. Для выяснения собираются привлекать РАН
В недрах земли находится 5 трлн тонн природного водорода. Сколько таких запасов в России – неизвестно. В Минприроды РФ Mashnews сказали, что сведений о потенциальных запасах водорода в российских недрах нет
#Н2 #Китай
#h2 #водород
Китай пересмотрел планы на развитие водородного транспорта. В стране собираются построить 1200 водородных заправочных станций к 2025 году. Это больше, чем количество заправок на водороде в мире на данный момент.
В Китае исходят из того, что развитая инфраструктура подтягивает до своего уровня применение самой технологии.
#h2 #водород
Китай пересмотрел планы на развитие водородного транспорта. В стране собираются построить 1200 водородных заправочных станций к 2025 году. Это больше, чем количество заправок на водороде в мире на данный момент.
В Китае исходят из того, что развитая инфраструктура подтягивает до своего уровня применение самой технологии.
FuelCellsWorks
China Plans To Build More Than 1,200 Hydrogen Refueling Stations By 2025, More Than The Current Total Worldwide - FuelCellsWorks
China’s boom in the promotion of hydrogen fuel cell vehicles is generating increasing demand for hydrogen refueling stations (HRS), which has resulted in them
#Н2 #Россия
Ученые НИУ «МЭИ» разработали новый способ производства водорода при утилизации газовых отходов.
Схема разработанной технологии основана на добавлении природного газа в поток конвертерных газов (побочного продукта сталелитейной промышленности), что позволяет резко снизить их температуру за счет протекания углекислотной переработки газа и получить водородсодержащий газ. Такой метод основан на принципе безотходности при проведении процесса энергохимического накопления энергии.
«Новая разработка наших ученых способна решить две задачи одновременно – сократить углеродный след тяжелой промышленности и разработать новую и доступную технологию производства водорода. Более того, способ является новым шагом методологии интенсивного энергосбережения, которая считается основоположником общего прогресса теплотехнологических систем и комплексов, в первую очередь, энергоемких отраслей промышленности», − рассказал о новой разработке ректор НИУ «МЭИ» Николай Рогалев.
Проведенные расчеты показали, что на металлургическом предприятии с объемом производства 10 млн тонн конвертерной стали в год возможно получение 92 тыс. тонн водорода при сокращении выделения парниковых газов на 947 тыс. тонн, при этом себестоимость получаемого водорода составляет не более 7 рублей за нормальный кубометр водорода.
Проведена разработка конструктивных особенностей и численное моделирование основного объекта исследования разработанного способа − реактора энергохимического накопления энергии. Уникальным решением реактора является использование отходов металлургического производства в качестве временного катализатора с последующим возвратом его в технологический процесс.
https://teknoblog.ru/?p=123618
Ученые НИУ «МЭИ» разработали новый способ производства водорода при утилизации газовых отходов.
Схема разработанной технологии основана на добавлении природного газа в поток конвертерных газов (побочного продукта сталелитейной промышленности), что позволяет резко снизить их температуру за счет протекания углекислотной переработки газа и получить водородсодержащий газ. Такой метод основан на принципе безотходности при проведении процесса энергохимического накопления энергии.
«Новая разработка наших ученых способна решить две задачи одновременно – сократить углеродный след тяжелой промышленности и разработать новую и доступную технологию производства водорода. Более того, способ является новым шагом методологии интенсивного энергосбережения, которая считается основоположником общего прогресса теплотехнологических систем и комплексов, в первую очередь, энергоемких отраслей промышленности», − рассказал о новой разработке ректор НИУ «МЭИ» Николай Рогалев.
Проведенные расчеты показали, что на металлургическом предприятии с объемом производства 10 млн тонн конвертерной стали в год возможно получение 92 тыс. тонн водорода при сокращении выделения парниковых газов на 947 тыс. тонн, при этом себестоимость получаемого водорода составляет не более 7 рублей за нормальный кубометр водорода.
Проведена разработка конструктивных особенностей и численное моделирование основного объекта исследования разработанного способа − реактора энергохимического накопления энергии. Уникальным решением реактора является использование отходов металлургического производства в качестве временного катализатора с последующим возвратом его в технологический процесс.
https://teknoblog.ru/?p=123618
ТЭКНОБЛОГ
В МЭИ разработали новую технологию производства водорода • ТЭКНОБЛОГ
Ученые НИУ «МЭИ» разработали новый способ производства водорода при утилизации газовых отходов. Схема разработанной технологии основана на добавлении • Новости Альтернативная энергетика, ВИЭ, водород, возобновляемые технологии, МЭИ
#Н2 #Россия
Российским ученым удалось резко повысить эффективность хранения водорода за счет соединений цезия и рубидия
Соединения на основе цезия и рубидия, щелочных металлов серебристо-желтого и серебристо-белого цвета, способны вбирать и удерживать в своем объеме в четыре раза больше водорода, чем другие известные на сегодняшний день материалы. Такой вывод сделали ученые из Сколтеха, Института кристаллографии имени А. В. Шубникова РАН и научных центров Китая, Японии и Италии по итогам исследования, результаты которого опубликованы в журнале Advanced Energy Materials.
Речь идет о гептагидриде цезия (CsH7) и нонагидриде рубидия (RbH9), которые, по мнению ученых, будут сохранять устойчивость при атмосферном давлении. «Доля атомов водорода в этих веществах выше, чем в любых известных гидридах, существующих при нормальных давлениях, – вдвое выше, чем в метане CH4», – цитирует Сколтех Дмитрия Семенюка, выпускника аспирантуры по программе «Наука о материалах».
Эксперимент, в ходе которого были синтезированы соединения на основе цезия и рубидия, состоял из нескольких этапов. «Богатое водородом твёрдое вещество боразан (боран аммиака NH3BH3) реагирует с цезием или рубидием. Получается соль — амидоборан цезия или рубидия. При нагревании соль разлагается на моногидрид цезия или рубидия и большое количество водорода. Поскольку эксперимент проходит в ячейке с алмазными наковальнями, которые обеспечивают давление в 100 тыс. атмосфер, выделившийся водород втискивается в пустоты кристаллической решётки низших гидридов с образованием полигидридов: гептагидрида цезия и двух вариантов нонагидрида рубидия с разной топологией кристаллической структуры», – цитирует Сколтех руководителя исследования, заведующего Лабораторией дизайна материалов Артема Аганова.
Авторы в дальнейшем планируют масштабировать эксперимент с использованием гидравлического пресса, чтобы получить полигидриды цезия и рубидия в большем количестве и при меньшем давлении (10 тыс. атмосфер).
https://globalenergyprize.org/ru/2024/05/10/rossijskim-uchenym-udalos-rezko-povysit-jeffektivnost-hranenija-vodoroda-za-schet-soedinenij-cezija-i-rubidija/
Российским ученым удалось резко повысить эффективность хранения водорода за счет соединений цезия и рубидия
Соединения на основе цезия и рубидия, щелочных металлов серебристо-желтого и серебристо-белого цвета, способны вбирать и удерживать в своем объеме в четыре раза больше водорода, чем другие известные на сегодняшний день материалы. Такой вывод сделали ученые из Сколтеха, Института кристаллографии имени А. В. Шубникова РАН и научных центров Китая, Японии и Италии по итогам исследования, результаты которого опубликованы в журнале Advanced Energy Materials.
Речь идет о гептагидриде цезия (CsH7) и нонагидриде рубидия (RbH9), которые, по мнению ученых, будут сохранять устойчивость при атмосферном давлении. «Доля атомов водорода в этих веществах выше, чем в любых известных гидридах, существующих при нормальных давлениях, – вдвое выше, чем в метане CH4», – цитирует Сколтех Дмитрия Семенюка, выпускника аспирантуры по программе «Наука о материалах».
Эксперимент, в ходе которого были синтезированы соединения на основе цезия и рубидия, состоял из нескольких этапов. «Богатое водородом твёрдое вещество боразан (боран аммиака NH3BH3) реагирует с цезием или рубидием. Получается соль — амидоборан цезия или рубидия. При нагревании соль разлагается на моногидрид цезия или рубидия и большое количество водорода. Поскольку эксперимент проходит в ячейке с алмазными наковальнями, которые обеспечивают давление в 100 тыс. атмосфер, выделившийся водород втискивается в пустоты кристаллической решётки низших гидридов с образованием полигидридов: гептагидрида цезия и двух вариантов нонагидрида рубидия с разной топологией кристаллической структуры», – цитирует Сколтех руководителя исследования, заведующего Лабораторией дизайна материалов Артема Аганова.
Авторы в дальнейшем планируют масштабировать эксперимент с использованием гидравлического пресса, чтобы получить полигидриды цезия и рубидия в большем количестве и при меньшем давлении (10 тыс. атмосфер).
https://globalenergyprize.org/ru/2024/05/10/rossijskim-uchenym-udalos-rezko-povysit-jeffektivnost-hranenija-vodoroda-za-schet-soedinenij-cezija-i-rubidija/
Ассоциация "Глобальная энергия" - Глобальная энергия
Российским ученым удалось резко повысить эффективность хранения водорода за счет соединений цезия и рубидия - Ассоциация "Глобальная…
Несмотря на появление новых способов производства водорода, препятствием для его промышленного внедрения остается сложность транспортировки, которая напрямую связана с его физическими свойствами – легкостью (в 14 раз легче воздуха), химической активностью…
#Н2 #Китай
Китай догоняет и опережает страны ОЭСР в технологиях производства и хранения водорода - Пекин разработал свою первую жидководородную систему, установленную на транспортных средствах, что ознаменовало собой новый прорыв в транспортном секторе страны.
Будучи одним из основных компонентов тяжелых грузовиков на жидком водороде, данная система полностью китайского производства поможет тяжелым грузовикам, работающим за счет этого вида топлива, увеличить дальность хода на одном заряде до более чем 1 000 км.
По сравнению со своим предшественником, новая система отличается 20-процентным увеличением полезного объема при тех же габаритах, а также снижением себестоимости более чем на 30%.
Китай догоняет и опережает страны ОЭСР в технологиях производства и хранения водорода - Пекин разработал свою первую жидководородную систему, установленную на транспортных средствах, что ознаменовало собой новый прорыв в транспортном секторе страны.
Будучи одним из основных компонентов тяжелых грузовиков на жидком водороде, данная система полностью китайского производства поможет тяжелым грузовикам, работающим за счет этого вида топлива, увеличить дальность хода на одном заряде до более чем 1 000 км.
По сравнению со своим предшественником, новая система отличается 20-процентным увеличением полезного объема при тех же габаритах, а также снижением себестоимости более чем на 30%.
#Н2 #Китай #США #ЕС
К 2030 году Китай, США и Европа будут доминировать в производстве низкоуглеродного водорода, - прогнозирует BNEF.
На эти три рынка будет приходиться 80% мирового производства чистого водорода, которое к 2030 году вырастет в 30 раз до 16,4 млн тонн. На долю США будет приходиться 37% объема производства низкоуглеродного водорода, за 2 месте - Европа, на 3 - Китай с 24% и 19% объема соответственно.
Другие регионы с крупными портфелями проектов, но с меньшей политической поддержкой, такие как Латинская Америка и Австралия, могут играть лишь незначительную роль в глобальном обеспечении экологически чистого H2 до 2030 года,- полагают аналитики.
К 2030 году Китай, США и Европа будут доминировать в производстве низкоуглеродного водорода, - прогнозирует BNEF.
На эти три рынка будет приходиться 80% мирового производства чистого водорода, которое к 2030 году вырастет в 30 раз до 16,4 млн тонн. На долю США будет приходиться 37% объема производства низкоуглеродного водорода, за 2 месте - Европа, на 3 - Китай с 24% и 19% объема соответственно.
Другие регионы с крупными портфелями проектов, но с меньшей политической поддержкой, такие как Латинская Америка и Австралия, могут играть лишь незначительную роль в глобальном обеспечении экологически чистого H2 до 2030 года,- полагают аналитики.
#Н2 #Россия
На следующей неделе на острове Сахалин откроют первый полигон по производству зеленого водорода в России.
Уже идет монтаж солнечной электростанции, которая будет обеспечивать объект энергией.
На полигоне предусмотрено четыре основных проекта реализации технологий:
◾️В поселке Новиково с изолированной энергосистемой будет смонтирована установка по генерации водорода, а также система накопления электроэнергии.
◾️В поселке Огоньки планируется генерация электроэнергии с использованием водорода.
◾️Третий проект предназначен для мобильных систем генерации электроэнергии. Например, для нужд спасательных отрядов.
◾️Четвертый сценарий применения водорода касается сферы ЖКХ, в частности, тестирования водородного транспорта в городской среде.
На следующей неделе на острове Сахалин откроют первый полигон по производству зеленого водорода в России.
Уже идет монтаж солнечной электростанции, которая будет обеспечивать объект энергией.
На полигоне предусмотрено четыре основных проекта реализации технологий:
◾️В поселке Новиково с изолированной энергосистемой будет смонтирована установка по генерации водорода, а также система накопления электроэнергии.
◾️В поселке Огоньки планируется генерация электроэнергии с использованием водорода.
◾️Третий проект предназначен для мобильных систем генерации электроэнергии. Например, для нужд спасательных отрядов.
◾️Четвертый сценарий применения водорода касается сферы ЖКХ, в частности, тестирования водородного транспорта в городской среде.