Anonymous Quiz
5%
Градиентный спуск
25%
Стохастический градиентный спуск
70%
Random Search
0%
K-means
🤔2
Бинарную кросс-энтропию можно улучшать в зависимости от задачи:
- С взвешиванием классов — если классы несбалансированы.
- Focal Loss — фокусируется на трудных примерах, уменьшая вклад лёгких.
- Label smoothing — снижает переуверенность модели, заменяя метки вроде 1/0 на 0.9/0.1.
- Dice Loss / Jaccard Loss — используются в задачах сегментации, где важна форма, а не только точность пикселя.
- Combo Loss — сочетание BCE с другими функциями (например, с Dice), чтобы уравновесить разные аспекты задачи.
Ставь 👍 если знал ответ, 🔥 если нет
Забирай 📚Базу Знаний
Please open Telegram to view this post
VIEW IN TELEGRAM
Anonymous Quiz
19%
RandomUnderSampler
66%
SMOTE
14%
CrossValidation
1%
PCA
Anonymous Quiz
7%
Gradient Descent
23%
Forward Selection
61%
Permutation Importance
9%
Backpropagation