Forwarded from Machinelearning
⚡️ Gemma 3 QAT
Google DeepMind выпустили обновленные версии своих языковых моделей Gemma 3, которые стали значительно эффективнее по использованию памяти без существенной потери производительности.
Ключевая технология: QAT (Quantization-Aware Training)
Что это? QAT — это техника обучения, при которой модель во время дообучения "учится" работать с пониженной точностью вычислений (используя меньше бит для представления чисел). Это имитирует условия, в которых модель будет работать после квантизации (сжатия).
Обычная квантизация после обучения может привести к падению точности. QAT позволяет модели заранее адаптироваться к работе в низкоточном режиме, минимизируя потерю качества после финальной квантизации.
Каждая модель (1B, 4B, 12B, 27B) была дообучена примерно на 5000 шагов с имитацией низкой разрядности весов. При этом использовался приём, похожий на знание-дистилляцию: оригинальная неквантованная модель выступала в роли «учителя».
Преимущество QAT-подхода для Gemma 3 оказалось колоссальным. Официально заявлено, что квантованные модели Gemma 3 QAT сохраняют качество, практически не упало, при этом требуют в ~3 раза меньше памяти.
Например, объём памяти для хранения весов самой крупной модели на 27B параметров сократился с ~54 ГБ (в формате bfloat16) до ~14 ГБ в 4-битном целочисленном формате – это экономия памяти примерно в ~3–4 раза.
✔️HF
@ai_machinelearning_big_data
#google #gemma #AI #ML #LLM #Quantization
Google DeepMind выпустили обновленные версии своих языковых моделей Gemma 3, которые стали значительно эффективнее по использованию памяти без существенной потери производительности.
Ключевая технология: QAT (Quantization-Aware Training)
Что это? QAT — это техника обучения, при которой модель во время дообучения "учится" работать с пониженной точностью вычислений (используя меньше бит для представления чисел). Это имитирует условия, в которых модель будет работать после квантизации (сжатия).
Обычная квантизация после обучения может привести к падению точности. QAT позволяет модели заранее адаптироваться к работе в низкоточном режиме, минимизируя потерю качества после финальной квантизации.
Каждая модель (1B, 4B, 12B, 27B) была дообучена примерно на 5000 шагов с имитацией низкой разрядности весов. При этом использовался приём, похожий на знание-дистилляцию: оригинальная неквантованная модель выступала в роли «учителя».
Преимущество QAT-подхода для Gemma 3 оказалось колоссальным. Официально заявлено, что квантованные модели Gemma 3 QAT сохраняют качество, практически не упало, при этом требуют в ~3 раза меньше памяти.
Например, объём памяти для хранения весов самой крупной модели на 27B параметров сократился с ~54 ГБ (в формате bfloat16) до ~14 ГБ в 4-битном целочисленном формате – это экономия памяти примерно в ~3–4 раза.
ollama run hf(.)co/google/gemma-3-4b-it-qat-q4_0-gguf
✔️HF
@ai_machinelearning_big_data
#google #gemma #AI #ML #LLM #Quantization
Forwarded from Machinelearning
🚀 Codex CLI
"Модели o3 и o4-mini настолько сильны в программировании, что мы решили упростить их использование и выпустить новый продукт"" — Codex CLI - написал в своем аккаунт Альтман
💻 Codex CLI — это мощный программирующий агент, который работает локально на вашем компьютере.
- Чат-ориентированная разработка: Позволяет взаимодействовать с вашим репозиторием через диалоговый интерфейс.
- Выполнение кода: Способен запускать код, манипулировать файлами и выполнять итерации прямо в терминале.
- Интеграция с системами контроля версий: Обеспечивает работу под управлением систем контроля версий, таких как Git.
🌟 Полностью open source и уже доступен для скачивания!
https://github.com/openai/codex
@ai_machinelearning_big_data
#AI #OpenSource #CodexCLI #Coding #LLM #DevTools
"Модели o3 и o4-mini настолько сильны в программировании, что мы решили упростить их использование и выпустить новый продукт"" — Codex CLI - написал в своем аккаунт Альтман
💻 Codex CLI — это мощный программирующий агент, который работает локально на вашем компьютере.
- Чат-ориентированная разработка: Позволяет взаимодействовать с вашим репозиторием через диалоговый интерфейс.
- Выполнение кода: Способен запускать код, манипулировать файлами и выполнять итерации прямо в терминале.
- Интеграция с системами контроля версий: Обеспечивает работу под управлением систем контроля версий, таких как Git.
🌟 Полностью open source и уже доступен для скачивания!
npm install -g @openai/codex
https://github.com/openai/codex
@ai_machinelearning_big_data
#AI #OpenSource #CodexCLI #Coding #LLM #DevTools
Forwarded from Machinelearning
This media is not supported in your browser
VIEW IN TELEGRAM
Исследование Стэнфордского университета о распространенной и насущной проблеме: языковые модели все чаще жертвуют точностью ради того, чтобы угодить пользователям. Эксперименты с ChatGPT-4o, Claude-Sonnet и Gemini показали, что в 58% случаев модели меняют ответы под давлением — даже если изначально были правы.
Ресерч проводился на 2 наборах данных: AMPS (математика) и MedQuad (медицина). Сначала модели отвечали на вопросы, затем их «поправляли» через опровержения — от простых («вы ошиблись») до сложных, с цитатами и абстрактными конструкциями.
Если модель меняла ответ вопреки истине, это считалось регрессивной сикофантией, если исправляла ошибку — прогрессивной.
Сикофантия - это поведение, когда человек (в исследовании - языковая модель) пытается понравиться другим, часто лестью или подхалимством, чтобы получить выгоду или одобрение.
Ответы оценивали двумя подходами: автоматически (GPT-4o в роли «судьи») и вручную. Gemini лидирует по сикофантии (62%), ChatGPT — скромнее (56%), а Claude-Sonnet набрала 57.44%, заняв среднюю позицию среди трех тестируемых моделей.
Превентивные опровержения (вне контекста диалога) провоцируют больше регрессивных сдвигов, особенно в математике. Например, добавление цитат к опровержению заставляло модели чаще отказываться от верных ответов. А вот простые возражения, наоборот, помогали исправить ошибки (прогрессивная сикофантия). В медицине разница между типами опровержений менее выражена, но риски выше из-за специфики вопросов.
Устойчивость сикофантии тоже вызывает вопросы. После первого изменения ответа модели продолжали «прогибаться» в 78% случаев, независимо от контекста или темы. Это говорит о системной проблеме: LLM слишком зависимы от пользовательского фидбэка, даже если он противоречат фактам.
Как эта склонность влияет на практические кейсы? Во-первых, в медицине или финансах слепое доверие к моделям опасно: они могут поддержать ложные утверждения, если пользователь настаивает. Во-вторых, дизайн промптов становится ключевой техникой — опровержения с отсылками к авторитетам манипулируют сильнее. Авторы предлагают точечную настройку моделей под конкретные задачи и усиление механизмов проверки фактов.
Выводы исследования заставляют задуматься: как балансировать между «удобными» ответами и правдой? Пока что модели часто выбирают первое. Исправлять это придется через улучшение архитектур, создание механизмов фактчекинга, фильтрацию и прозрачность — в противном случае внедрение LLM в критических сферах останется авантюрой.
@ai_machinelearning_big_data
#AI #ML #LLM #Research
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from Machinelearning
Magistral — первая модель рассуждений от Mistral AI. Она сочетает глубокую логическую обработку с возможностью отслеживать каждый шаг её «мышления».
Модель получила поддержку 8 языков, включая русский и выпущена в 2 вариантах:
Внутри Magistral работает в режиме рассуждений, разбивая задачи на цепочки логических шагов, а Flash Answers ускоряет вывод в 10 раз по сравнению с конкурентами. Для интеграции в рабочие процессы модель умеет взаимодействовать с внешними инструментами (API или базами данных).
В тестах Magistral Medium показал 73,6% точности на задачах AIME2024, демонстрируя силу в физических симуляциях и математических расчетах.
Для разработчиков доступны версии на Hugging Face, AWS и IBM WatsonX, а в будущем — на Azure и Google Cloud. Демо Magistral доступно в интерфейсе Le Chat или по API в La Plateforme.
@ai_machinelearning_big_data
#AI #ML #LLM #Magistral #MistralAI
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from Machinelearning
Пока одни восхищаются способностью ИИ писать код по текстовому описанию, в компании Марка Цукерберга решили устроить ему настоящее испытание на профессионализм и создали «The Automated LLM Speedrunning Benchmark» — полигон, где нейросетям предлагается не просто написать что-то с нуля, а воспроизвести и улучшить уже существующий код.
В качестве задачи был взят реальный проект NanoGPT, где сообщество энтузиастов соревнуется в максимальном ускорении обучения GPT-2, небольшой языковой модели. Цель - не просто скопировать, а понять и применить конкретную оптимизацию, которую до этого внедрил человек.
ИИ-агенту дают исходный скрипт предыдущего рекордсмена и подсказку одного из 3 уровней: от псевдокода с описанием изменений до полноценной мини-статьи, объясняющей суть улучшения. Агент, получив эти данные, должен внести правки в код так, чтобы приблизиться к скорости обучения следующего рекордсмена.
Эффективность мерили метрикой FSR (Fraction of Speedup Recovered), это доля восстановленного ускорения. Если человек ускорил процесс на 10 минут, а ИИ смог добиться ускорения в 5 минут, его результат — 50% FSR. Такая система позволяет оценить не абстрактные способности модели, а ее умение работать с конкретными, практическими задачами по оптимизации.
Итоги оказались, мягко говоря, отрезвляющими. Даже топовые модели (Claude 3.7 Sonnet и Gemini 2.5 Pro), показали очень скромные результаты.
С лучшими подсказками (псевдокод и детальное описание) самые успешные агенты с трудом смогли воспроизвести хотя бы 40% от прироста производительности, достигнутого человеком. Без подсказок их производительность была и вовсе близка к нулю.
Разбор полетов бенчмарка показал, что ИИ-агенты часто генерируют либо просто неработающий код с ошибками времени выполнения, либо код, который компилируется, но не дает никакого прироста скорости, а иногда даже замедляет процесс.
Авторы не просто опубликовали статью, а выложили весь фреймворк в открытый доступ, так что любой желающий может самостоятельно погонять практически любые модели.
В основе фреймворка лежит гибкий агентский каркас, который имитирует рабочий процесс исследователя: генерация идеи, реализация в коде, запуск эксперимента и анализ результатов.
Каждая итерация ИИ-агента аккуратно сохраняется в отдельную версию, создавая полную историю всех правок, от удачных до провальных.
Установка максимально проста, а для тех, кто хочет воспроизвести эксперименты из статьи, авторы приложили готовые скрипты. Также можно легко добавить и протестировать другие модели, просто создав для них конфиг или дать ИИ другую задачу, не связанную с NanoGPT - определять кастомные таски тоже можно.
@ai_machinelearning_big_data
#AI #ML #LLM #Benchmark
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from Machine learning Interview
🍏 Apple всерьёз задумалась о покупке Mistral — Bloomberg / Марк Гурман
По информации Bloomberg, Apple серьёзно рассматривает покупку французского стартапа Mistral AI, чтобы наконец войти в ИИ-гонку.
Это очень поздний шаг — но он показывает, насколько сильно Apple отстала от OpenAI, Google и даже xAI.
Пока другие выкатывают публичные LLM, мультимодальные ассистенты и интеграции в поиске, Apple остаётся в роли наблюдателя.
📌 Почему это важно:
- Mistral — один из главных open-source игроков на рынке ИИ (выпускают мощные LLM и Mixture of Experts-модели)
- У Apple пока нет ни собственной модели, ни сильной стратегии в области ИИ
- Приобретение Mistral может стать экстренной попыткой догнать конкурентов
Если сделка состоится — это будет крупнейший AI-манёвр Apple за всё время.
#Apple #Mistral #AI #LLM #ГонкаИИ
@machinelearning_interview
По информации Bloomberg, Apple серьёзно рассматривает покупку французского стартапа Mistral AI, чтобы наконец войти в ИИ-гонку.
Это очень поздний шаг — но он показывает, насколько сильно Apple отстала от OpenAI, Google и даже xAI.
Пока другие выкатывают публичные LLM, мультимодальные ассистенты и интеграции в поиске, Apple остаётся в роли наблюдателя.
📌 Почему это важно:
- Mistral — один из главных open-source игроков на рынке ИИ (выпускают мощные LLM и Mixture of Experts-модели)
- У Apple пока нет ни собственной модели, ни сильной стратегии в области ИИ
- Приобретение Mistral может стать экстренной попыткой догнать конкурентов
Если сделка состоится — это будет крупнейший AI-манёвр Apple за всё время.
#Apple #Mistral #AI #LLM #ГонкаИИ
@machinelearning_interview
Forwarded from Machinelearning
China Telecom совместно с TeleAI спроектировали фреймворк AI Flow, который рассматривает ИИ и сети передачи данных как единую систему.
AI Flow - это не просто очередной метод оптимизации, а цельная парадигма. Она предлагает отойти от идеи монолитного ИИ к распределенному и коллаборативному, где интеллект может перетекать по сети туда, где он в данный момент нужнее всего и где для него есть ресурсы.
Идея в том, чтобы разумно распределять нагрузку: простейшие операции выполняются на самом гаджете, более сложные и требующие низкой задержки — на ближайшем edge-сервере, а самое тяжелые задачи и ресурсоемкий инференс остаются в облаке.
AI Flow предлагает конкретные механизмы для такой концепции - спекулятивное декодирование, где легкая модель на устройстве быстро генерирует черновик ответа, а мощная модель на эдже его лишь верифицирует и корректирует.
Это не просто набор моделей разного размера, а целое семейство с архитектурно согласованными скрытыми представлениями.
Маленькая, средняя и большая модели устроены настолько похоже, что они могут бесшовно передавать друг другу эстафету инференса.
Модель на смартфоне обрабатывает первые несколько слоев, а затем ее промежуточный результат подхватывает модель на сервере и продолжает вычисления ровно с того же места, без какого-либо дополнительного преобразования данных.
Пайплайн AI Flow делает возможным взаимодействие разных моделей, от LLM и VLM до диффузионных генераторов.
Через такую коллаборацию рождается эмерджентный интеллект – коллективная интуиция, превышающая возможности отдельных сетей, где несколько агентов генерируют черновые решения, затем сервер-оркестратор выбирает лучшие фрагменты, объединяет их и возвращает итоговый ответ для уточнения с учетом контекста каждого из них.
В этом и фишка: после такой синергии ответ становится богаче и более осмысленным, ведь сходятся разные точки зрения и узкопрофильные знания моделей-участников.
Ее крупнейшая ветвь содержит 7 млрд. параметров и способна порождать early-exit подсети с эффективным числом параметров в 3, 4, 5 и 6 млрд:
@ai_machinelearning_big_data
#AI #ML #LLM #AIFlow #TeleAI
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM