Forwarded from Совет ЖКХ
#Новыетехнологии
🔬Ученые из СамГТУ представили новые вещества, которые ранее не применялись в производстве топливных элементов для выработки электроэнергии. Эти вещества вызвали интерес экспертов, которые считают, что их использование может значительно улучшить срок эксплуатации устройств и сделать их выпуск и использование более выгодными.
⚠️ Справочно.
Топливные элементы (ТЭ) – это электрохимические устройства, использующие водород, моноксид углерода либо газообразные органические топлива и кислород воздуха для производства электрической и тепловой энергии. Процесс производства электроэнергии в топливных элементах значительно более эффективен, чем в тепловых машинах. Кроме того, в ТЭ нет движущихся частей и минимизирована роль сжигания топлива, что делает процесс бесшумным и экологически чистым.
Специалисты предлагают применять твердооксидные варианты тех же топливных элементов, которые используются в настоящее время. Только в определенной вариации устройств использовать разные виды топлива и их реакцию с кислородом. При этом, образуется вода в качестве продукта переработки.
🧪 В 2006 году сотрудники СамГТУ разработали методику для обнаружения кристаллических структур, которые содержат внутренние каналы для передвижения ионов. «Для химической реакции в топливной ячейке необходим материал, проводящий кислородные ионы, называемый твердый электролит, между катодом и анодом», - рассказала Наталья Кабанова, старший научный сотрудник Международного научно-исследовательского центра по теоретическому материаловедению СамГТУ.
🔎 Результаты исследования опубликованы в SolidStateIonics.
🔬Ученые из СамГТУ представили новые вещества, которые ранее не применялись в производстве топливных элементов для выработки электроэнергии. Эти вещества вызвали интерес экспертов, которые считают, что их использование может значительно улучшить срок эксплуатации устройств и сделать их выпуск и использование более выгодными.
Топливные элементы (ТЭ) – это электрохимические устройства, использующие водород, моноксид углерода либо газообразные органические топлива и кислород воздуха для производства электрической и тепловой энергии. Процесс производства электроэнергии в топливных элементах значительно более эффективен, чем в тепловых машинах. Кроме того, в ТЭ нет движущихся частей и минимизирована роль сжигания топлива, что делает процесс бесшумным и экологически чистым.
Специалисты предлагают применять твердооксидные варианты тех же топливных элементов, которые используются в настоящее время. Только в определенной вариации устройств использовать разные виды топлива и их реакцию с кислородом. При этом, образуется вода в качестве продукта переработки.
🧪 В 2006 году сотрудники СамГТУ разработали методику для обнаружения кристаллических структур, которые содержат внутренние каналы для передвижения ионов. «Для химической реакции в топливной ячейке необходим материал, проводящий кислородные ионы, называемый твердый электролит, между катодом и анодом», - рассказала Наталья Кабанова, старший научный сотрудник Международного научно-исследовательского центра по теоретическому материаловедению СамГТУ.
🔎 Результаты исследования опубликованы в SolidStateIonics.
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from Совет ЖКХ
#Новыетехнологии
🇨🇳 Морская ветротурбина мощностью 14,3 МВт была установлена всего за 30 часов в Китае.
⏳ Китайский ветроэнергетический гигант Goldwind объявил в социальных сетях о том, что он установил свою оффшорную ветряную турбину мощностью 14,3 МВт всего за 30 рабочих часов.
✅ Goldwind смогла столь быстро установить морскую ветряную турбину GWH252-14,3 МВт в результате усовершенствования процессов сборки и установки.
✅ Ветротурбина мощностью 14,3 МВт была установлена на морской ветроэлектростанции Zhangpu Liuao Phase 2 в юго-восточной провинции Фуцзянь.
❗Источник:
https://www.world-energy.org/article/36054.html
🇨🇳 Морская ветротурбина мощностью 14,3 МВт была установлена всего за 30 часов в Китае.
⏳ Китайский ветроэнергетический гигант Goldwind объявил в социальных сетях о том, что он установил свою оффшорную ветряную турбину мощностью 14,3 МВт всего за 30 рабочих часов.
✅ Goldwind смогла столь быстро установить морскую ветряную турбину GWH252-14,3 МВт в результате усовершенствования процессов сборки и установки.
✅ Ветротурбина мощностью 14,3 МВт была установлена на морской ветроэлектростанции Zhangpu Liuao Phase 2 в юго-восточной провинции Фуцзянь.
❗Источник:
https://www.world-energy.org/article/36054.html
www.world-energy.org
Goldwind Installs a 14.3 MW Offshore Wind Turbine in 30 Hours of Work - World-Energy
Goldwind’s GWH252-14.3MW wind turbine is now installed offshore and installation operations took only 30 man hours.The rapid installation of the wind turbines was made possible by optimizing several time-consuming processes, according to the Chi
Forwarded from Совет ЖКХ
#Новыетехнологии
👨🔬 Ученые Национального исследовательского института «МЭИ» создали установку, благодаря которой газораспределительные пункты смогут сами снабжать себя электричеством.
📌 Газораспределительный пункт — промежуточное звено при транспортировке потребителю природного газа, в котором его давление снижают с 3–4 атмосфер до 0,05, а также очищают от примесей.
📌 Исследователи МЭИ предложили параллельно со специальной арматурой для понижения давления газа установить ДЕТАНДЕР — небольшое устройство с микротурбиной, генератором и аккумулятором.
✅ Проведенные эксперименты показали, если отправлять на детандер 2–5% входного потока газа, мощность установки составит 1–3 киловатта. Ее хватит, чтобы газораспределительный пункт ушел на электрическое «самообслуживание».
👩🔬 По мнению ученых, через разработанные детандеры можно пропускать 95–99% потока газа. Тогда энергии от микротурбины хватит, чтобы запитать котельную или небольшое предприятие.
❗Источник:
https://e-plus.media/news/moskovskie-uchenye-vstroili-v-gazoprovod-ventilyator-kotoryj-vyrabatyvaet-elektrichestvo/
👨🔬 Ученые Национального исследовательского института «МЭИ» создали установку, благодаря которой газораспределительные пункты смогут сами снабжать себя электричеством.
📌 Газораспределительный пункт — промежуточное звено при транспортировке потребителю природного газа, в котором его давление снижают с 3–4 атмосфер до 0,05, а также очищают от примесей.
📌 Исследователи МЭИ предложили параллельно со специальной арматурой для понижения давления газа установить ДЕТАНДЕР — небольшое устройство с микротурбиной, генератором и аккумулятором.
✅ Проведенные эксперименты показали, если отправлять на детандер 2–5% входного потока газа, мощность установки составит 1–3 киловатта. Ее хватит, чтобы газораспределительный пункт ушел на электрическое «самообслуживание».
👩🔬 По мнению ученых, через разработанные детандеры можно пропускать 95–99% потока газа. Тогда энергии от микротурбины хватит, чтобы запитать котельную или небольшое предприятие.
❗Источник:
https://e-plus.media/news/moskovskie-uchenye-vstroili-v-gazoprovod-ventilyator-kotoryj-vyrabatyvaet-elektrichestvo/
Онлайн-журнал «Энергия+» -
Московские ученые встроили в газопровод «вентилятор», который вырабатывает электричество - Онлайн-журнал «Энергия+»
Ученые Национального исследовательского института «МЭИ» создали установку, благодаря которой газораспределительные пункты смогут сами снабжать себя электричеством. Газораспределительный пункт — промежуточное звено при транспортировке потребителю природного…
Forwarded from Совет ЖКХ
#Новыетехнологии
👨🔬 Учёные Института физики твёрдого тела имени Ю.А. Осипьяна Российской академии наук разработали материал для хранения и транспортировки водорода.
🇷🇺 🇧🇷 Российские учёные совместно с бразильскими коллегами синтезировали соединение, которое может стать оптимальным наполнителем для транспортировки и хранения водорода.
🧪 Кварцевое стекло с добавлением оксида лития способно адсорбировать водород и выделять его без особых требований к температурным условиям.
💥 Применение такого материала поможет решить одну из серьёзных проблем водородной энергетики — хранения и перевозки водородного топлива.
👨🔬 Как отмечают авторы работы, водород считается наиболее экологичным видом топлива: при его сгорании отсутствуют выбросы углекислого газа и образуется лишь водяной пар, который снова поступает в замкнутый цикл производства.
❗Источник:
https://russian.rt.com/science/article/1198819-rossiya-uchyonye-vodorod-hranenie
👨🔬 Учёные Института физики твёрдого тела имени Ю.А. Осипьяна Российской академии наук разработали материал для хранения и транспортировки водорода.
🇷🇺 🇧🇷 Российские учёные совместно с бразильскими коллегами синтезировали соединение, которое может стать оптимальным наполнителем для транспортировки и хранения водорода.
🧪 Кварцевое стекло с добавлением оксида лития способно адсорбировать водород и выделять его без особых требований к температурным условиям.
💥 Применение такого материала поможет решить одну из серьёзных проблем водородной энергетики — хранения и перевозки водородного топлива.
👨🔬 Как отмечают авторы работы, водород считается наиболее экологичным видом топлива: при его сгорании отсутствуют выбросы углекислого газа и образуется лишь водяной пар, который снова поступает в замкнутый цикл производства.
❗Источник:
https://russian.rt.com/science/article/1198819-rossiya-uchyonye-vodorod-hranenie
RT на русском
«Большое влияние оказывает диффузия»: российские учёные создали материал для хранения и транспортировки водорода
Российские учёные совместно с иностранными коллегами синтезировали соединение, которое может стать оптимальным наполнителем для транспортировки и хранения водорода. Кварцевое стекло с добавлением оксида лития способно адсорбировать водород и выделять его…
Forwarded from Совет ЖКХ
#Новыетехнологии
🏗 В Китае построилипервый в мире гравитационный аккумулятор.
📌 Швейцарская компания Energy Vault приступила к вводу в эксплуатацию хранилища энергии мощностью 25 МВт/100 МВтч, расположенного рядом с ветроэнергетической установкой недалеко от Шанхая.
➡ Существует множество способов хранения энергии: от электрохимических батарей до гидроэлектростанций с насосом, железно-воздушных батарей, маховиков. Energy Vault применила новый подход, строя башни с электродвигателями, которые поднимают и опускают большие блоки, используя силу гравитации для распределения электроэнергии, когда она необходима.
➡ Гравитационную башню, которая будет полностью подключена к сети в четвертом квартале 2023 года, станет первым в мире ненасосным гидрогравитационным хранилищем.
📌 Накопитель Energy Vault поднимает композитные блоки с помощью электрического (солнечного) двигателя. Поднятые блоки складываются друг в друга, что создает потенциальную энергию. Когда блоки опускаются, энергия собирается и отправляется для использования. Конструкция башни основана на физике гидроаккумулирования энергии.
❗Источник:
https://www.saurenergy.com/solar-energy-news/swiss-storage-firm-energy-vault-commissions-first-gravity-energy-storage-system-in-china
🏗 В Китае построили
📌 Швейцарская компания Energy Vault приступила к вводу в эксплуатацию хранилища энергии мощностью 25 МВт/100 МВтч, расположенного рядом с ветроэнергетической установкой недалеко от Шанхая.
➡ Существует множество способов хранения энергии: от электрохимических батарей до гидроэлектростанций с насосом, железно-воздушных батарей, маховиков. Energy Vault применила новый подход, строя башни с электродвигателями, которые поднимают и опускают большие блоки, используя силу гравитации для распределения электроэнергии, когда она необходима.
➡ Гравитационную башню, которая будет полностью подключена к сети в четвертом квартале 2023 года, станет первым в мире ненасосным гидрогравитационным хранилищем.
📌 Накопитель Energy Vault поднимает композитные блоки с помощью электрического (солнечного) двигателя. Поднятые блоки складываются друг в друга, что создает потенциальную энергию. Когда блоки опускаются, энергия собирается и отправляется для использования. Конструкция башни основана на физике гидроаккумулирования энергии.
❗Источник:
https://www.saurenergy.com/solar-energy-news/swiss-storage-firm-energy-vault-commissions-first-gravity-energy-storage-system-in-china
Saur Energy International
Swiss Storage Firm Energy Vault Commissions First Gravity Energy Storage System In China
The world’s first grid-scale EVx™ gravity energy storage system (GESS) has entered the first phases of commissioning. Energy Vault Holdings, a firm that delves in sustainable, grid-scale energy storage solutions, has announced the commissioning of the project…
Forwarded from Совет ЖКХ
#Новыетехнологии
💼 В Новосибирском государственном техническом университете НЭТИ создана беспилотная локальная система энергоснабжения на базе электростанции малой мощности.
📌 В НГТУ НЭТИ придумали технологию управления, которая решает задачу малозатратного и безопасного подключения электростанции локальной системы энергоснабжения к централизованной сети и ее последующую эффективную работу.
📌 Эффект разработки состоит в повышении надежности энергоснабжения потребителей, повышении экономической эффективности локальных систем энергоснабжения, в том числе значительного снижения сроков окупаемости объектов локальной энергетической инфраструктуры.
➡️ Разработка может быть интересна электроэнергетической отрасли, застройщикам, решающим задачи энергообеспечения новых площадок, крупным потребителям энергии, заинтересованным в снижении затрат на энергообеспечение, газовикам, нефтедобытчикам.
❗Источник:
https://www.nstu.ru/news/news_more?idnews=151605
💼 В Новосибирском государственном техническом университете НЭТИ создана беспилотная локальная система энергоснабжения на базе электростанции малой мощности.
📌 В НГТУ НЭТИ придумали технологию управления, которая решает задачу малозатратного и безопасного подключения электростанции локальной системы энергоснабжения к централизованной сети и ее последующую эффективную работу.
📌 Эффект разработки состоит в повышении надежности энергоснабжения потребителей, повышении экономической эффективности локальных систем энергоснабжения, в том числе значительного снижения сроков окупаемости объектов локальной энергетической инфраструктуры.
➡️ Разработка может быть интересна электроэнергетической отрасли, застройщикам, решающим задачи энергообеспечения новых площадок, крупным потребителям энергии, заинтересованным в снижении затрат на энергообеспечение, газовикам, нефтедобытчикам.
❗Источник:
https://www.nstu.ru/news/news_more?idnews=151605
www.nstu.ru
В НГТУ НЭТИ создана беспилотная локальная система энергоснабжения на базе электростанции малой мощности
Forwarded from Совет ЖКХ
#новыетехнологии
👨💻 Московские ученые научились превращать силу ветра в электричество с помощью магнитов.
📌 Учёные НИУ «МЭИ» разработали трансмиссию нового типа. Принцип действия устройства основан не на привычном преобразовании скорости вращения механическим путём, а на силовом взаимодействии магнитных полей. За счёт этого преобразование движения происходит полностью бесконтактно.
📌 Разработка выполнялась для нужд ветроэнергетики и электроэнергетики, где взаимодействия магнитных полей обеспечивает постоянную частоту вращения синхронного генератора при переменной частоте вращения лопастей. Внедрение данной разработки на объектах энергетики позволит усовершенствовать механизмы контроля технической исправности оборудования, управления энергопотреблением, потерями и показателями качества электроэнергии в сетях при относительно небольших затратах.
➡ Внедрение разработки обеспечит повышение показателей надежности, стойкости к неблагоприятным погодным условиям и перегрузкам, бесшумность, а также управляемость электромеханических систем.
❗Подробнее:
https://mpei.ru/news/Pages/newsItem.aspx?newsID=3906
👨💻 Московские ученые научились превращать силу ветра в электричество с помощью магнитов.
📌 Учёные НИУ «МЭИ» разработали трансмиссию нового типа. Принцип действия устройства основан не на привычном преобразовании скорости вращения механическим путём, а на силовом взаимодействии магнитных полей. За счёт этого преобразование движения происходит полностью бесконтактно.
📌 Разработка выполнялась для нужд ветроэнергетики и электроэнергетики, где взаимодействия магнитных полей обеспечивает постоянную частоту вращения синхронного генератора при переменной частоте вращения лопастей. Внедрение данной разработки на объектах энергетики позволит усовершенствовать механизмы контроля технической исправности оборудования, управления энергопотреблением, потерями и показателями качества электроэнергии в сетях при относительно небольших затратах.
➡ Внедрение разработки обеспечит повышение показателей надежности, стойкости к неблагоприятным погодным условиям и перегрузкам, бесшумность, а также управляемость электромеханических систем.
❗Подробнее:
https://mpei.ru/news/Pages/newsItem.aspx?newsID=3906
mpei.ru
Страница для новостей
Forwarded from Совет ЖКХ
#Новыетехнологии
📌Крупнейшая плавающая фотоэлектрическая электростанция запущена в Китае - в Фуяне (провинция Аньхой). Она способна обеспечить энергией 15 тысяч домов в год.
Проектом руководит компания Sungrow Power Supply Co Ltd. Срок эксплуатации станции составляет 25 лет, она разработана с применением технологий, которые способны противостоять агрессивной внешней среде, в том числе жаре, соли и влаге.
Фотоэлектрическая электростанция имеет 1,2 млн фотоэлектрических модулей, площадь которых эквивалентна размеру 1300 футбольных полей.
Общая установленная мощность составляет 650 000 кВт. Средняя годовая выработка электроэнергии составляет около 700 млн. кВтч. Ежегодно можно экономить около 220 000 тонн стандартного угля и сократить выбросы CO2 примерно на 580 000 тонн.
Электростанция опережает мир по масштабу и представляет собой эффективную активацию сухопутного пространства. Электростанция является ядром солнечного фотоэлектрического инвертора sg2500-mv, а интеграция водонепроницаемого и антикоррозийного солнечного блока pvs-8m / 16m-w, конвертирует постоянный ток, может генерироваться для переменного тока и подключать наземную сетку для использования.
❗Подробнее:
https://masterok.livejournal.com/3663703.html
https://russianblogs.com/article/33493650113/
📌Крупнейшая плавающая фотоэлектрическая электростанция запущена в Китае - в Фуяне (провинция Аньхой). Она способна обеспечить энергией 15 тысяч домов в год.
Проектом руководит компания Sungrow Power Supply Co Ltd. Срок эксплуатации станции составляет 25 лет, она разработана с применением технологий, которые способны противостоять агрессивной внешней среде, в том числе жаре, соли и влаге.
Фотоэлектрическая электростанция имеет 1,2 млн фотоэлектрических модулей, площадь которых эквивалентна размеру 1300 футбольных полей.
Общая установленная мощность составляет 650 000 кВт. Средняя годовая выработка электроэнергии составляет около 700 млн. кВтч. Ежегодно можно экономить около 220 000 тонн стандартного угля и сократить выбросы CO2 примерно на 580 000 тонн.
Электростанция опережает мир по масштабу и представляет собой эффективную активацию сухопутного пространства. Электростанция является ядром солнечного фотоэлектрического инвертора sg2500-mv, а интеграция водонепроницаемого и антикоррозийного солнечного блока pvs-8m / 16m-w, конвертирует постоянный ток, может генерироваться для переменного тока и подключать наземную сетку для использования.
❗Подробнее:
https://masterok.livejournal.com/3663703.html
https://russianblogs.com/article/33493650113/
Livejournal
Крупнейшая плавучая солнечная электростанция
Пару лет назад мы уже рассматривали крупнейшую ветряную электростанцию - это был японский проект корпорации Kyocera. Но разве мы надеялись, что Китай оставит эту тему в стороне? И вот Китай объявил, что крупнейшая на земле плавучая солнечная электростанция…
Forwarded from Совет ЖКХ
#Новыетехнологии
❗Ученые Университета МИСиС разработали первую в России компактную всепогодную солнечную батарею в виде коврика. Устройство способно генерировать электричество на солнце, при пасмурной погоде и в тени.
🌞Большинство современных солнечных батарей используют кремниевые элементы. Их производство дорогое, энергоемкое и, как следствие, недоступное для большинства потребителей. К тому же они не рассчитаны на работу в неблагоприятных погодных условиях. Батареи на основе перовскитов могут вырабатывать больше энергии из солнечного света, и в производстве они дешевле, чем аналоги. Для контроля дефектов и морфологии тонкопленочных структур ученые применили инновационные методы легирования графеноподобными материалами и хлорсодержащими прекурсорами.
За основу был взят гибридный перовскит — материал из минерала титанида кальция, который ученые называют будущим солнечной энергетики. В сравнении с традиционным кремнием тонкие пленки (менее микрометра) гибридного перовскита в 10 раз активнее поглощают видимый свет. Чтобы улучшить этот показатель, ученые добавили в перовскит небольшое количество карбида титана. Это позволило дольше «удерживать» в структуре материала атомы йода, благодаря которым перовскит активнее поглощает даже самый слабый солнечный свет, а самому перовскиту — не «выцветать», теряя свои свойства.
📌Опыты показали, что улучшенный перовскит выдает КПД 25% при идеальных условиях (когда солнечный свет падает прямо на него), 15% при сильной облачности и в тени.
Батарею изготовили в виде удобного переносного коврика: перовскитные элементы закрепили на лоскуте прочной ткани, который можно свернуть, взять с собой и развернуть по прибытии на место.
📌Разработка прошла лабораторные и натурные испытания и готова к запуску в промышленное производство. Всепогодную батарею можно будет использовать в зданиях для бесперебойного питания устройств, относящихся к интернету вещей (например, элементов умного дома), в полярных широтах или в составе космических исследовательских микроспутников.
❗Подробнее:
https://misis.ru/news/8856/
https://pubs.aip.org/aip/apl/article-abstract/119/7/071901/1023063/Single-source-chemical-vapor-deposition-ssCVD-for?redirectedFrom=fulltext
❗Ученые Университета МИСиС разработали первую в России компактную всепогодную солнечную батарею в виде коврика. Устройство способно генерировать электричество на солнце, при пасмурной погоде и в тени.
🌞Большинство современных солнечных батарей используют кремниевые элементы. Их производство дорогое, энергоемкое и, как следствие, недоступное для большинства потребителей. К тому же они не рассчитаны на работу в неблагоприятных погодных условиях. Батареи на основе перовскитов могут вырабатывать больше энергии из солнечного света, и в производстве они дешевле, чем аналоги. Для контроля дефектов и морфологии тонкопленочных структур ученые применили инновационные методы легирования графеноподобными материалами и хлорсодержащими прекурсорами.
За основу был взят гибридный перовскит — материал из минерала титанида кальция, который ученые называют будущим солнечной энергетики. В сравнении с традиционным кремнием тонкие пленки (менее микрометра) гибридного перовскита в 10 раз активнее поглощают видимый свет. Чтобы улучшить этот показатель, ученые добавили в перовскит небольшое количество карбида титана. Это позволило дольше «удерживать» в структуре материала атомы йода, благодаря которым перовскит активнее поглощает даже самый слабый солнечный свет, а самому перовскиту — не «выцветать», теряя свои свойства.
📌Опыты показали, что улучшенный перовскит выдает КПД 25% при идеальных условиях (когда солнечный свет падает прямо на него), 15% при сильной облачности и в тени.
Батарею изготовили в виде удобного переносного коврика: перовскитные элементы закрепили на лоскуте прочной ткани, который можно свернуть, взять с собой и развернуть по прибытии на место.
📌Разработка прошла лабораторные и натурные испытания и готова к запуску в промышленное производство. Всепогодную батарею можно будет использовать в зданиях для бесперебойного питания устройств, относящихся к интернету вещей (например, элементов умного дома), в полярных широтах или в составе космических исследовательских микроспутников.
❗Подробнее:
https://misis.ru/news/8856/
https://pubs.aip.org/aip/apl/article-abstract/119/7/071901/1023063/Single-source-chemical-vapor-deposition-ssCVD-for?redirectedFrom=fulltext
misis.ru
В Университете МИСИС создали всепогодную солнечную батарею
Свежие новости университета: В Университете МИСИС создали всепогодную солнечную батарею | Наука НИТУ МИСИС
Forwarded from Совет ЖКХ
#Новыетехнологии
❗Ученые лаборатории тепломассопереноса Томского политехнического университета при поддержке программы Минобрнауки РФ «Приоритет 2030» запустили установку полного цикла по созданию композиционных топлив в условиях, приближенных к реальным теплоэнергетическим производствам.
Установка позволяет моделировать процесс сжигания топлива в топках котельных агрегатов с возможностью контроля и управления технологическими параметрами. На ней будут проводить полупромышленные исследования композиционных топлив на основе низкосортного сырья и коммунальных отходов.
Принцип действия энергоустановки заключается в последовательном приготовлении, воспламенении и сжигании композиционного топлива. На первой стадии твердое топливное сырье взвешивается и измельчается в дробилке до размера не более одного сантиметра. После этого твердое топливное сырье загружается в шаровую мельницу мокрого помола при помощи шнека, где частицы измельчаются до пылевидного состояния и предварительно смешиваются с водой и жидкими горючими компонентами.
На второй стадии полученная суспензия подается в смешивающую емкость при помощи насоса, куда также дополнительно добавляются жидкие горючие отходы (отработанное масло, сточные воды и прочее). Для получения стабильной топливной смеси помимо перемешивания лопастной мешалкой выполняется рециркуляция топлива через насос-гомогенизатор. На третьем этапе готовое суспензионное топливо подается дозировочным насосом на форсунку муфельного предтопка для последующего сжигания в топке котла.
Мощность комплекса — 63 кВт. Этого хватит, чтобы отопить производственное помещение площадью около 500 квадратных метров. Установка может производить около 25 килограмм композиционного топлива в час. Потенциальная стоимость такого топлива — 2,5 рубля за килограмм. Комплектация установки позволяет ей работать круглосуточно в течение всего года. В год она способна выработать около 470 гигакалорий тепловой энергии.
❗Подробнее:
https://news.tpu.ru/news/uchenye-tpu-sozdali-polupromyshlennuyu-ustanovku-dlya-proizvodstva-i-szhiganiya-kompozitsionnogo-top/
❗Ученые лаборатории тепломассопереноса Томского политехнического университета при поддержке программы Минобрнауки РФ «Приоритет 2030» запустили установку полного цикла по созданию композиционных топлив в условиях, приближенных к реальным теплоэнергетическим производствам.
Установка позволяет моделировать процесс сжигания топлива в топках котельных агрегатов с возможностью контроля и управления технологическими параметрами. На ней будут проводить полупромышленные исследования композиционных топлив на основе низкосортного сырья и коммунальных отходов.
Принцип действия энергоустановки заключается в последовательном приготовлении, воспламенении и сжигании композиционного топлива. На первой стадии твердое топливное сырье взвешивается и измельчается в дробилке до размера не более одного сантиметра. После этого твердое топливное сырье загружается в шаровую мельницу мокрого помола при помощи шнека, где частицы измельчаются до пылевидного состояния и предварительно смешиваются с водой и жидкими горючими компонентами.
На второй стадии полученная суспензия подается в смешивающую емкость при помощи насоса, куда также дополнительно добавляются жидкие горючие отходы (отработанное масло, сточные воды и прочее). Для получения стабильной топливной смеси помимо перемешивания лопастной мешалкой выполняется рециркуляция топлива через насос-гомогенизатор. На третьем этапе готовое суспензионное топливо подается дозировочным насосом на форсунку муфельного предтопка для последующего сжигания в топке котла.
Мощность комплекса — 63 кВт. Этого хватит, чтобы отопить производственное помещение площадью около 500 квадратных метров. Установка может производить около 25 килограмм композиционного топлива в час. Потенциальная стоимость такого топлива — 2,5 рубля за килограмм. Комплектация установки позволяет ей работать круглосуточно в течение всего года. В год она способна выработать около 470 гигакалорий тепловой энергии.
❗Подробнее:
https://news.tpu.ru/news/uchenye-tpu-sozdali-polupromyshlennuyu-ustanovku-dlya-proizvodstva-i-szhiganiya-kompozitsionnogo-top/
news.tpu.ru
Ученые ТПУ создали полупромышленную установку для производства и сжигания композиционного топлива | ТПУ
Ученые лаборатории тепломассопереноса Томского политехнического университета при поддержке программы Минобрнауки РФ «Приоритет 2030» запустили установку полного цикла по созданию композиционных топлив в условиях, приближенных к реальным теплоэнергетическим…