In 3GPP and the wireless carriers’ vision, 5G will serve the high-bandwidth, low-latency requirements; CBRS will facilitate private LTE networks; last but certainly not least, NB-IoT and LTE-M will serve the majority of other IoT needs, specifically LPWANs—at least while they’re deploying and refining 5G through the early 2020s so that it can potentially surpass its forerunner protocols.
LTE-M’s big advantage for LPWAN networks stems from capping the maximum system bandwidth at 1.4 MHz, honing in on that classic LPWAN trope of transmitting small data packets at low transfer rates to prolong battery life. What’s more, LTE-M networks can link up with existing LTE infrastructure with a simple software patch whereas other LPWAN solutions operating in unlicensed spectrum often require building out proprietary network infrastructure like LoRaWAN gateways and so forth. Compared to LTE-M, NB-IoT has an even lower maximum bandwidth (200 KHz compared to LTE-M’s 1.4 MHz), which makes it a great option for truly low-power LPWANs that can operate outside of the LTE band.
In closing, it’s great to see the increasing pace of NB-IoT and LTE-M deployments worldwide. As you can see on this list of recent and ongoing deployments, both NB-IoT and LTE-M are spreading across the world through a healthy ecosystem of telcos and providers. We’re beginning to see an increasingly-rich cellular IoT solutions landscape emerge. In the end, just as with edge computing, whichever players rise and fall, on the whole, IoT will still see huge gains from the competition-driven innovation.
LTE-M’s big advantage for LPWAN networks stems from capping the maximum system bandwidth at 1.4 MHz, honing in on that classic LPWAN trope of transmitting small data packets at low transfer rates to prolong battery life. What’s more, LTE-M networks can link up with existing LTE infrastructure with a simple software patch whereas other LPWAN solutions operating in unlicensed spectrum often require building out proprietary network infrastructure like LoRaWAN gateways and so forth. Compared to LTE-M, NB-IoT has an even lower maximum bandwidth (200 KHz compared to LTE-M’s 1.4 MHz), which makes it a great option for truly low-power LPWANs that can operate outside of the LTE band.
In closing, it’s great to see the increasing pace of NB-IoT and LTE-M deployments worldwide. As you can see on this list of recent and ongoing deployments, both NB-IoT and LTE-M are spreading across the world through a healthy ecosystem of telcos and providers. We’re beginning to see an increasingly-rich cellular IoT solutions landscape emerge. In the end, just as with edge computing, whichever players rise and fall, on the whole, IoT will still see huge gains from the competition-driven innovation.
What audience has come here?
Anonymous Poll
54%
IoT Developer
22%
Software Developer
2%
UI/UX Designer
2%
Investor
20%
Others
Get $20 USD credit for Freelancer.com now! Sign up at https://www.freelancer.com/get/zelinskiydev?f=give&source=tw
Freelancer
Get £15 GBP off when you sign up at Freelancer the world's largest freelancing and crowdsourcing marketplace.
Get £15 GBP for your first project on Freelancer.com, the world's largest freelancing and crowdsourcing marketplace.
What are your predictions in 2019 of Internet of Things (IoT)?
Anonymous Poll
93%
Revolution in here!
7%
I don't believe in this technology...