Data Science & Machine Learning
72.9K subscribers
774 photos
2 videos
68 files
681 links
Join this channel to learn data science, artificial intelligence and machine learning with funny quizzes, interesting projects and amazing resources for free

For collaborations: @love_data
Download Telegram
TOP 10 SQL Concepts for Job Interview

1. Aggregate Functions (SUM/AVG)
2. Group By and Order By
3. JOINs (Inner/Left/Right)
4. Union and Union All
5. Date and Time processing
6. String processing
7. Window Functions (Partition by)
8. Subquery
9. View and Index
10. Common Table Expression (CTE)


TOP 10 Statistics Concepts for Job Interview

1. Sampling
2. Experiments (A/B tests)
3. Descriptive Statistics
4. p-value
5. Probability Distributions
6. t-test
7. ANOVA
8. Correlation
9. Linear Regression
10. Logistics Regression


TOP 10 Python Concepts for Job Interview

1. Reading data from file/table
2. Writing data to file/table
3. Data Types
4. Function
5. Data Preprocessing (numpy/pandas)
6. Data Visualisation (Matplotlib/seaborn/bokeh)
7. Machine Learning (sklearn)
8. Deep Learning (Tensorflow/Keras/PyTorch)
9. Distributed Processing (PySpark)
10. Functional and Object Oriented Programming


#DataScienceWithDrAngshu #DataScience #Analytics #BigData #MachineLearning #ArtificialIntelligence #Python #SQL #Statistics #DataVisualisation #Experiments #Interview #Job
๐Ÿ‘2
Pattern Recognition and
Machine Learning [ Information Science and Statistics ]

Christopher M. Bishop
#python #machinelearning #statistics #information #ai #ml
๐Ÿ‘2
๐Ÿ”ฐ Machine Learning Roadmap for Beginners 2025
โ”œโ”€โ”€ ๐Ÿง  What is Machine Learning?
โ”œโ”€โ”€ ๐Ÿงช ML vs AI vs Deep Learning
โ”œโ”€โ”€ ๐Ÿ”ข Math Foundation (Linear Algebra, Calculus, Stats Basics)
โ”œโ”€โ”€ ๐Ÿ Python Libraries (NumPy, Pandas, Scikit-learn)
โ”œโ”€โ”€ ๐Ÿ“Š Data Preprocessing & Cleaning
โ”œโ”€โ”€ ๐Ÿ“‰ Feature Selection & Engineering
โ”œโ”€โ”€ ๐Ÿงญ Supervised Learning (Regression, Classification)
โ”œโ”€โ”€ ๐Ÿงฑ Unsupervised Learning (Clustering, Dimensionality Reduction)
โ”œโ”€โ”€ ๐Ÿ•น Model Evaluation (Confusion Matrix, ROC, AUC)
โ”œโ”€โ”€ โš™๏ธ Model Tuning (Hyperparameter Tuning, Grid Search)
โ”œโ”€โ”€ ๐Ÿงฐ Ensemble Methods (Bagging, Boosting, Random Forests)
โ”œโ”€โ”€ ๐Ÿ”ฎ Introduction to Neural Networks
โ”œโ”€โ”€ ๐Ÿ” Overfitting vs Underfitting
โ”œโ”€โ”€ ๐Ÿ“ˆ Model Deployment (Streamlit, Flask, FastAPI Basics)
โ”œโ”€โ”€ ๐Ÿงช ML Projects (Classification, Forecasting, Recommender)
โ”œโ”€โ”€ ๐Ÿ† ML Competitions (Kaggle, Hackathons)

Like for the detailed explanation โค๏ธ

#machinelearning
โค7๐Ÿ‘2