TOP 10 SQL Concepts for Job Interview
1. Aggregate Functions (SUM/AVG)
2. Group By and Order By
3. JOINs (Inner/Left/Right)
4. Union and Union All
5. Date and Time processing
6. String processing
7. Window Functions (Partition by)
8. Subquery
9. View and Index
10. Common Table Expression (CTE)
TOP 10 Statistics Concepts for Job Interview
1. Sampling
2. Experiments (A/B tests)
3. Descriptive Statistics
4. p-value
5. Probability Distributions
6. t-test
7. ANOVA
8. Correlation
9. Linear Regression
10. Logistics Regression
TOP 10 Python Concepts for Job Interview
1. Reading data from file/table
2. Writing data to file/table
3. Data Types
4. Function
5. Data Preprocessing (numpy/pandas)
6. Data Visualisation (Matplotlib/seaborn/bokeh)
7. Machine Learning (sklearn)
8. Deep Learning (Tensorflow/Keras/PyTorch)
9. Distributed Processing (PySpark)
10. Functional and Object Oriented Programming
#DataScienceWithDrAngshu #DataScience #Analytics #BigData #MachineLearning #ArtificialIntelligence #Python #SQL #Statistics #DataVisualisation #Experiments #Interview #Job
1. Aggregate Functions (SUM/AVG)
2. Group By and Order By
3. JOINs (Inner/Left/Right)
4. Union and Union All
5. Date and Time processing
6. String processing
7. Window Functions (Partition by)
8. Subquery
9. View and Index
10. Common Table Expression (CTE)
TOP 10 Statistics Concepts for Job Interview
1. Sampling
2. Experiments (A/B tests)
3. Descriptive Statistics
4. p-value
5. Probability Distributions
6. t-test
7. ANOVA
8. Correlation
9. Linear Regression
10. Logistics Regression
TOP 10 Python Concepts for Job Interview
1. Reading data from file/table
2. Writing data to file/table
3. Data Types
4. Function
5. Data Preprocessing (numpy/pandas)
6. Data Visualisation (Matplotlib/seaborn/bokeh)
7. Machine Learning (sklearn)
8. Deep Learning (Tensorflow/Keras/PyTorch)
9. Distributed Processing (PySpark)
10. Functional and Object Oriented Programming
#DataScienceWithDrAngshu #DataScience #Analytics #BigData #MachineLearning #ArtificialIntelligence #Python #SQL #Statistics #DataVisualisation #Experiments #Interview #Job
๐2
Pattern Recognition and
Machine Learning [ Information Science and Statistics ]
Christopher M. Bishop
#python #machinelearning #statistics #information #ai #ml
Machine Learning [ Information Science and Statistics ]
Christopher M. Bishop
#python #machinelearning #statistics #information #ai #ml
๐2
๐ฐ Machine Learning Roadmap for Beginners 2025
โโโ ๐ง What is Machine Learning?
โโโ ๐งช ML vs AI vs Deep Learning
โโโ ๐ข Math Foundation (Linear Algebra, Calculus, Stats Basics)
โโโ ๐ Python Libraries (NumPy, Pandas, Scikit-learn)
โโโ ๐ Data Preprocessing & Cleaning
โโโ ๐ Feature Selection & Engineering
โโโ ๐งญ Supervised Learning (Regression, Classification)
โโโ ๐งฑ Unsupervised Learning (Clustering, Dimensionality Reduction)
โโโ ๐น Model Evaluation (Confusion Matrix, ROC, AUC)
โโโ โ๏ธ Model Tuning (Hyperparameter Tuning, Grid Search)
โโโ ๐งฐ Ensemble Methods (Bagging, Boosting, Random Forests)
โโโ ๐ฎ Introduction to Neural Networks
โโโ ๐ Overfitting vs Underfitting
โโโ ๐ Model Deployment (Streamlit, Flask, FastAPI Basics)
โโโ ๐งช ML Projects (Classification, Forecasting, Recommender)
โโโ ๐ ML Competitions (Kaggle, Hackathons)
Like for the detailed explanation โค๏ธ
#machinelearning
โโโ ๐ง What is Machine Learning?
โโโ ๐งช ML vs AI vs Deep Learning
โโโ ๐ข Math Foundation (Linear Algebra, Calculus, Stats Basics)
โโโ ๐ Python Libraries (NumPy, Pandas, Scikit-learn)
โโโ ๐ Data Preprocessing & Cleaning
โโโ ๐ Feature Selection & Engineering
โโโ ๐งญ Supervised Learning (Regression, Classification)
โโโ ๐งฑ Unsupervised Learning (Clustering, Dimensionality Reduction)
โโโ ๐น Model Evaluation (Confusion Matrix, ROC, AUC)
โโโ โ๏ธ Model Tuning (Hyperparameter Tuning, Grid Search)
โโโ ๐งฐ Ensemble Methods (Bagging, Boosting, Random Forests)
โโโ ๐ฎ Introduction to Neural Networks
โโโ ๐ Overfitting vs Underfitting
โโโ ๐ Model Deployment (Streamlit, Flask, FastAPI Basics)
โโโ ๐งช ML Projects (Classification, Forecasting, Recommender)
โโโ ๐ ML Competitions (Kaggle, Hackathons)
Like for the detailed explanation โค๏ธ
#machinelearning
โค7๐2