🦆 DuckDB + Python: мощный тандем для аналитики прямо на ноутбуке
Если вы работаете с аналитикой данных и вам важна скорость, гибкость и простота — попробуйте связку DuckDB + Python. Это встроенная колонко-ориентированная СУБД, которая отлично работает с pandas, Parquet и SQL-запросами — прямо в памяти, без сервера.
📌 Что такое DuckDB?
- Лёгкая SQL-база данных
- Работает как SQLite, но оптимизирована под аналитику
- Отлично справляется с файлами Parquet и Arrow
- Идеально для обработки больших наборов данных локально
🔗 Возможности интеграции с Python:
- Прямой запрос к pandas DataFrame:
- Работа с файлами:
- Использование SQL + pandas + визуализация в одном блоке
💡 Преимущества:
- 🚀 Быстрее pandas при агрегациях и фильтрации
- 🔗 Поддержка Parquet, CSV, JSON, Arrow и др.
- 🧠 SQL как первый язык аналитики — работает из коробки
- 🛠 Не требует отдельного сервера или установки СУБД
🧪 Это отличное решение для data science проектов, анализа больших логов, локальных ETL-задач и экспериментальной работы с данными.
🔍 Подробный гайд
#Python #DuckDB #DataAnalytics #Pandas #SQL #ETL
➡ SQL Community | Чат
Если вы работаете с аналитикой данных и вам важна скорость, гибкость и простота — попробуйте связку DuckDB + Python. Это встроенная колонко-ориентированная СУБД, которая отлично работает с pandas, Parquet и SQL-запросами — прямо в памяти, без сервера.
📌 Что такое DuckDB?
- Лёгкая SQL-база данных
- Работает как SQLite, но оптимизирована под аналитику
- Отлично справляется с файлами Parquet и Arrow
- Идеально для обработки больших наборов данных локально
🔗 Возможности интеграции с Python:
- Прямой запрос к pandas DataFrame:
con.execute("SELECT * FROM df WHERE col > 10").df()
- Работа с файлами:
con.execute("SELECT COUNT(*) FROM 'data.parquet'")
- Использование SQL + pandas + визуализация в одном блоке
💡 Преимущества:
- 🚀 Быстрее pandas при агрегациях и фильтрации
- 🔗 Поддержка Parquet, CSV, JSON, Arrow и др.
- 🧠 SQL как первый язык аналитики — работает из коробки
- 🛠 Не требует отдельного сервера или установки СУБД
🧪 Это отличное решение для data science проектов, анализа больших логов, локальных ETL-задач и экспериментальной работы с данными.
🔍 Подробный гайд
#Python #DuckDB #DataAnalytics #Pandas #SQL #ETL
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥7❤5👍4🥰1👏1