Forwarded from Machinelearning
This media is not supported in your browser
VIEW IN TELEGRAM
Модель заточена и оптимизирована для интеграции с Model Context Protocol (MCP).
📊 На SimpleQA (agentic / MCP) — Jan-nano набирает 80.7
Это серьёзный результат для модели такого размера!
Модель работает через Jan — open-source альтернативу ChatGPT, которая запускается локально.
🔍 Jan-nano — ещё один пример того, как компактные модели могут конкурировать с большими моделями благодаря обучению и агентной архитектуре.
▪ HF: https://huggingface.co/Menlo/Jan-nano
@ai_machinelearning_big_data
#LLM #JanNano #MCP #OpenSourceAI
Please open Telegram to view this post
VIEW IN TELEGRAM
❤4👍4🔥3😁1
Forwarded from Machinelearning
Архитектура Mixture-of-Recursions (MoR), предложенная Google в соавторстве с KAIST AI объединяет в едином фреймворке традиционные подходы разделения параметров и адаптивные вычисления, заставляя модель думать над каждым токеном с разной глубиной.
Под капотом MoR - рекурсивный трансформер, который прогоняет входные данные через один и тот же блок слоев несколько раз. Но главная фишка в том, что количество этих прогонов, или глубина рекурсии, не фиксированное, а динамическое и определяется для каждого токена индивидуально.
Легковесный обучаемый роутер анализирует токен и решает, сколько вычислительных усилий на него потратить. Простые слова могут пройти всего один цикл рекурсии, в то время как семантически нагруженные термины отправятся на более глубокую обработку из нескольких циклов.
Это дает два главных преимущества:
При одинаковом бюджете на обучение (в FLOPs) и меньшем размере самой модели MoR показывает более низкую перплексию и лучшие результаты в few-shot задачах, чем стандартные и рекурсивные аналоги.
@ai_machinelearning_big_data
#AI #ML #LLM #Architecture #MoR
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
❤4👍1🔥1