Математика Дата саентиста
14K subscribers
439 photos
168 videos
39 files
383 links
Download Telegram
Forwarded from Machinelearning
🔥 GOOGLE AI опубликовали пост о настоящем прорыве в области QUANTUM AI

Сегодня в журнале Nature команда Google впервые показали проверяемое квантовое преимущество с помощью метода, называемого *out-of-time-order correlator (OTOC), или «квантовые эхо».

Эксперимент проведён на квантовом чипе Willow, и он показывает, что квантовые устройства уже способны решать задачи, которые невозможно эффективно симулировать на классических компьютерах.

Квантовый процессор Google выполнил алгоритм под названием Quantum Echoes - в 13 000 раз быстрее, чем лучший классический алгоритм на одном из самых мощных суперкомпьютеров в мире.

🟠Что это значит простыми словами
Учёные научились буквально «отматывать время» в квантовой системе и смотреть, когда она переходит от упорядоченного поведения к хаосу. Этот переход - ключ к пониманию, где начинается настоящее квантовое преимущество.

Проще говоря:

1) Учёные запускают квантовую систему вперёд во времени, позволяя ей запутаться и “рассеять” информацию.

2) Затем применяют обратные операции, как будто “перематывают” процесс назад.

3) Если всё сделано идеально, система должна вернуться в исходное состояние,но из-за квантового хаоса это происходит лишь частично.

4) Разница между “до” и “после” показывает, насколько глубоко информация ушла в хаос.

Работа показывает, что можно извлекать информацию из хаотичных квантовых состояний, ранее считавшихся полностью случайными.

Такой эффект невозможно воспроизвести на обычных суперкомпьютерах. Это шаг к практическим квантовым вычислениям, которые смогут моделировать материалы, молекулы и сложные физические процессы с точностью, недостижимой ранее.

«Quantum Echoes может стать основой будущих квантовых разработок для реального применения.

*Out-of-time-order correlator (сокращённо OTOC) - это специальная метрика, с помощью которой физики измеряют, как быстро информация "распространяется" и смешивается внутри квантовой системы.

🟢 Статья: https://www.nature.com/articles/s41586-025-09526-6

@ai_machinelearning_big_data

#QuantumComputing #Google #AI #Nature #Physics
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍65🔥5🤯1
This media is not supported in your browser
VIEW IN TELEGRAM
Визуализация тригонометрии
21🤡7👍3
ВВС: История математики

Часть 1 Язык вселенной
Часть 2 Гений Востока
Часть 3 Пределы пространства
Часть 4 За пределы бесконечности

Математика - универсальный язык Вселенной, фундамент, на котором основаны все другие науки. Как человечество смогло открыть тайны этого универсального языка? Начиная с древнейших времен, прослеживается история математики до наших дней и завершается рассказом о наиболее важных проблемах современности. За решение каждой из этих "проблем тысячелетия" полагается крупное денежное вознаграждение. Но главное, их решение позволит лучше понять устройство нашего мира.
👍196🔥6🤡1
[Kuznecov_A.V.,_Sakovich_V.A.,_Holod_N.I.]_Vuessha.pdf
11 MB
Высшая математика. Математическое программирование
Кузнецов А.В., Сакович В.А., Холод Н.И. (2013)

Излагаются методы решения задач линейного программирования, элементы теории двойственности, рассматриваются программирование на сетях, дискретное и выпуклое программирование, основы теории матричных игр, динамического и параметрического программирования, даются сведения из стохастического программирования, излагаются методы решения задач транспортного типа. Основное внимание уделено приложениям математических методов в экономике, приведены примеры экономического содержания с анализом полученных результатов.
13🔥1🤡1
🧠 ИИ теперь не только создаёт знания — он их спасает

Издательская группа Frontiers сообщила: около 90% научных данных никогда не переиспользуются и не публикуются должным образом.
Иными словами, большинство открытий исчезает в цифровом небытии.

Чтобы это изменить, Frontiers запустила платформу на базе ИИ, которая
- сканирует забытые исследования,
- систематизирует данные,
- и связывает их между собой, превращая «потерянные» результаты в новые открытия.

💡 Наука тонет в данных — и теперь именно ИИ помогает достать их на поверхность.

https://www.sciencedaily.com/releases/2025/10/251013040314.htm
👍1812❤‍🔥3😁1🤡1🏆1
Media is too big
VIEW IN TELEGRAM
🧠 IBM объясняет, как математика симметрий помогает создавать новые квантовые алгоритмы

Математика групп — это про симметрии: как объекты можно менять местами, вращать или переставлять, и что при этом остаётся неизменным.

IBM показывает, что те же самые идеи лежат в основе квантовых вычислений — и помогают искать задачи, где квантовые алгоритмы могут быть быстрее классических.

Ключевые идеи:
- Симметрии в природе описываются теорией групп
- Квантовые системы тоже подчиняются симметриям
- Если правильно описать задачу через симметрии, можно найти квантовый алгоритм с ускорением
- IBM работает с более сложными (не-абелевыми) симметриями — это следующий уровень, сложнее и мощнее

Зачем это всё
Мы ещё не нашли много «убойных» квантовых алгоритмов.
Подход через симметрии — это способ открывать новые, а не только улучшать старые.

Если коротко:
Математика симметрий может стать картой для поиска новых квантовых алгоритмов.

Подробнее: https://www.ibm.com/quantum/blog/group-theory
Видео: https://www.youtube.com/watch?v=eSy-pwkLiIQ

#quantum #math #grouptheory #IBMQuantum #algorithms
🔥5👍42👎1
🔬 Учёные из Польши: квантовые частицы связаны "на расстоянии" просто потому, что они одинаковые

Физики-теоретики из Польши показали, что *нелокальность* — загадочная "мгновенная связь" между квантовыми частицами — может возникать без запутанности и без взаимодействия.

🔍 Почему?
Потому что одинаковые квантовые частицы (например, электроны или фотоны) неотличимы по сути.
И этого уже может быть достаточно, чтобы возникали скрытые "связи" на расстоянии.

1. Проще квантовая связь
Если нелокальные связи возникают *автоматически*, то не нужно всегда настраивать хрупкую запутанность.
➡️ Это может упростить квантовые сети и сделать их стабильнее.

2. Новый подход к квантовым компьютерам
Возможно, мы сможем использовать *встроенные* нелокальные корреляции, чтобы сделать вычисления более надёжными и энергоэффективными.

3. Иная перспектива на телепортацию
Сейчас телепортация работает на основе запутанности.
Но если *нелокальность встроена изначально*, возможно появление телепортации без запутанности.
👀

4. Глубокий намёк на структуру Вселенной
Если нелокальность — свойство *тождественности частиц*, то пространство и время могут быть производными, а информация — фундаментальна.

Это поддерживает идеи квантовой гравитации и теории симуляции.

🌌 Вывод

Это не телепортация людей (пока).
Но если *вселенная уже "проводит кабель"* между частицами, нам остаётся лишь подключиться.

Возможно, Вселенная уже всё подготовила. Надо только понять, как этим воспользоваться.

https://www.nature.com/articles/s41534-025-01086-x
11🔥6👍4👎2
AI, который сам выводит законы физики

Команда из Университета Цинхуа, Пекинского университета и других исследователей представила систему PhyE2E - ИИ, который способен автоматически выводить физические уравнения прямо из сырых данных. Без участия человека.

Модель обучена на реальных научных датасетах и известных физических законах. Она сочетает трансформеры и символьное рассуждение, чтобы генерировать компактные, корректные по единицам измерения и понятные учёным уравнения.

На астрофизических данных NASA PhyE2E не только воспроизвёл человеческие результаты, но и предложил улучшенную формулу солнечных циклов.

Это шаг за пределы обычного «подбора кривой»: ИИ начинает учиться тому, как устроена Вселенная, и выражает это на человеческом языке — уравнениями. Исследователи называют PhyE2E первым шагом к автоматическому научному открытию, где ИИ не просто анализирует данные, а выводит новые законы природы.

Если такие системы будут развиваться дальше, темпы научного прогресса могут увеличиться на порядки — действительно в тысячи раз.

https://phys.org/news/2025-11-ai-framework-uncover-space-physics.html
👎8👍73🌚1
👿 Data Dojo 27 ноября: программа встречи

Data Dojo — мероприятие Яндекса для ML-энтузиастов всех уровней. Какие будут лекции:

17:10 Обзор трендов и предварительные итоги года
Сергей Овчаренко, руководитель отдела мультимодального анализа и генерации


17:40 Научить AI не бредить, сдать физику и получить права: как мы готовили задачи ML-квалификации Yandex Cup
Сергей Фиронов, ведущий разработчик службы поведения и предсказания департамента Автономного транспорта


18:10 Кухня, гости, музыка: как мы научили колонку реагировать в реальном хаосе
Дмитрий Солодуха, руководитель команды голосовой активации


Собираемся в 16:00. Фуршет, нетворкинг, мастер-класс, afterparty — будет всё.

Регистрируйся
Please open Telegram to view this post
VIEW IN TELEGRAM
👍73🔥2
Forwarded from Machinelearning
This media is not supported in your browser
VIEW IN TELEGRAM
💡 GPT-5 и Sudoku-Bench, почему новые модели всё ещё ломаются на судоку

Sakana AI представили Sudoku-Bench - набор классических и продвинутых судоку-задач, который проверяет не память модели, а её способность рассуждать, понимать новые правила и держать всю логику пазла в голове.

Они протестировали современные модели, включая GPT-5 и методы тонкой настройки вроде GRPO и thought-cloning.

Главное:
GPT-5 стала первой моделью, которая уверенно решает часть сложных задач и показала около 33 % успешных решений на наборе challenge_100. Ранее ни одна LLM не справлялась даже с обычным 9×9.
Но треть решённых - это всё ещё мало: большая часть задач остаётся нерешённой, особенно варианты с необычными правилами.

Ключевая трудность в том, что такие головоломки требуют не просто следовать правилам, а уметь понять незнакомые ограничения, найти стратегию «входа», просчитывать ходы вперёд и сохранять глобальную согласованность. Модели часто делают правильные локальные шаги, но теряют общую структуру.

GRPO и thought-cloning дают улучшения, но пока не позволяют моделям преодолеть сложные варианты. Даже с обучением на человеческих примерах ИИ быстро «запутывается» в длинных логических цепочках.

Sudoku-Bench - это тест на реальное рассуждение, а не на подбор паттернов. Он проверяет пространственное мышление, логику, способность адаптироваться и работать с новыми правилами. Прогресс на таких задачах - показатель движения к более структурному и осмысленному ИИ.

Авторы предлагают Sudoku-Bench как стандарт, по которому можно судить, насколько модели действительно умеют думать. Для будущих систем важны не просто большие параметры, а развитая логика, планирование и умение работать с новыми структурами задач.

@ai_machinelearning_big_data

#ai #ml #sakana
Please open Telegram to view this post
VIEW IN TELEGRAM
7😁4
🚀 VibeThinker: Новый стандарт в моделях с малым количеством параметров

Это 1.5B модель, которая демонстрирует выдающиеся способности в решении математических задач, соперничая с гораздо более крупными моделями. Используя инновационную методику постобучения, она достигает результатов, сопоставимых с открытыми моделями, такими как GPT OSS-20B Medium, при значительно меньших затратах.

🚀Основные моменты:
- Эффективность: 1.5B параметров, производительность на уровне 1000B+ моделей.
- Инновационная методология: "Spectrum-to-Signal Principle" для улучшения разнообразия выходных данных.
- Выдающиеся результаты: Превосходит модели, в 10-600 раз большие.
- Экономичность: Разработка модели стоит всего $7,800 против сотен тысяч для конкурентов.

📌 GitHub: https://github.com/WeiboAI/VibeThinker

#python
5🔥3👍1