This media is not supported in your browser
VIEW IN TELEGRAM
Эта идея, разработанная Жозефом Фурье в XIX веке, показывает, что даже сложные формы сигналов — например, меандр или пилообразная волна — могут быть построены путем наложения гармоник базовых тригонометрических функций.
Ряд Фурье позволяет анализировать и восстанавливать сигналы в таких областях, как физика, инженерия и музыка, раскрывая скрытые в них частотные компоненты. Это не просто формула — это мост между временем и частотой, между формой и звуком.
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥28❤8👍6👎1
📌 StepFun-Prover-Preview-7B & 32B — LLM для формального доказательства теорем с интеграцией внешних инструментов
Модели используют обучение с подкреплением и обратную связь от окружения для эффективной генерации доказательств в Lean 4.
🔥 7B — на уровне DeepSeek-Prover-V2-671B и Kimina-Prover-72B на тесте miniF2F (pass@1)
💡 32B — опережает всех известных аналогов на 4%+ (miniF2F, pass@1)
📈 Человеко-подобное уточнение доказательств
🛠 Отлично подходит для исследователей, развивающих математическое мышление моделей
- HuggingFace: https://huggingface.co/stepfun-ai/StepFun-Prover-Preview-32B
- GitHub:https://github.com/stepfun-ai/StepFun-Prover-Preview
#StepFun #FormalTheoremProving #AI4Math
Модели используют обучение с подкреплением и обратную связь от окружения для эффективной генерации доказательств в Lean 4.
🔥 7B — на уровне DeepSeek-Prover-V2-671B и Kimina-Prover-72B на тесте miniF2F (pass@1)
💡 32B — опережает всех известных аналогов на 4%+ (miniF2F, pass@1)
📈 Человеко-подобное уточнение доказательств
🛠 Отлично подходит для исследователей, развивающих математическое мышление моделей
- HuggingFace: https://huggingface.co/stepfun-ai/StepFun-Prover-Preview-32B
- GitHub:https://github.com/stepfun-ai/StepFun-Prover-Preview
#StepFun #FormalTheoremProving #AI4Math
❤3👍3
Media is too big
VIEW IN TELEGRAM
Метод преодоления "барьера сортировки" для задач кратчайшего пути в ориентированных графах.
Группа исследователей из университетов Синьхуа, Стенфорда и Института Макса Планика представили детерминированный алгоритм для решения задачи SSSP в ориентированных графах с неотрицательными вещественными весами, который работает за время, пропорциональное числу ребер, умноженному на логарифмический множитель, который растет медленнее, чем обычный логарифм.
Проблема поиска кратчайшего пути от одной вершины до всех остальных (SSSP) — одна из фундаментальных в теории графов, и её история тянется с 50-х годов прошлого века. Классический алгоритм Дейкстры, в связке с продвинутыми структурами данных, решает эту задачу за время, которое примерно пропорционально сумме числа рёбер и произведения числа вершин на логарифм от их же числа.
Именно этот множитель - число вершин, умноженное на логарифм, долгое время считался теоретическим минимумом, так как в своей основе алгоритм Дейкстры побочно сортирует вершины по расстоянию от источника. Этот предел известен как «барьер сортировки» и казался непреодолимым.
Алгоритм Дейкстры на каждом шаге выбирает из "границы" - множества еще не обработанных вершин ту, что находится ближе всего к источнику. Это и создает узкое место, так как размер границы может достигать величины, сопоставимой с общим числом вершин в графе, и на каждом шаге требуется находить минимум.
Алгоритм Беллмана-Форда, в свою очередь, не требует сортировки, но его сложность пропорциональна числу ребер, умноженному на количество шагов, что слишком долго.
Вместо того чтобы поддерживать полную отсортированную границу, алгоритм фокусируется на ее сокращении. А если граница слишком велика, то запускается несколько шагов алгоритма Беллмана-Форда из ее вершин.
Это позволяет найти точное расстояние до некоторой части вершин, чьи кратчайшие пути коротки. Длинные же пути должны проходить через одну из "опорных" вершин, которых оказывается значительно меньше, чем вершин в исходной границе. Таким образом, сложная работа концентрируется только на этом небольшом наборе опорных точек.
Он рекурсивно разбивает задачу на несколько уровней. На каждом уровне применяется вышеописанная техника сокращения границы, что позволяет значительно уменьшить объем работы на каждую вершину, поскольку логарифмический множитель эффективно делится на другой, более медленно растущий логарифмический член.
В итоге, путем подбора внутренних параметров алгоритма, которые являются специфическими функциями от логарифма числа вершин, и достигается итоговая временная сложность, пропорциональная числу ребер, умноженному на этот новый, более медленно растущий логарифмический множитель.
— Быстрее решаются задачи в навигации, графах дорог, сетях и планировании.
— Доказано, что Дейкстра — не предел, и можно ещё ускорять поиск кратчайших путей.
Please open Telegram to view this post
VIEW IN TELEGRAM
❤4🔥4👍3❤🔥1