Математика Дата саентиста
13.5K subscribers
394 photos
128 videos
37 files
340 links
Download Telegram
Конспект лекции Гонконгского университета прикладной линейной алгебры и дифференциальных уравнений

📌 Лекции

@data_math
👍14🔥4😢42😁1
⚡️Легкий способ получать свежие обновления и следить за трендами в разработке на вашем языке. Находите свой стек и подписывайтесь:

МАШИННОЕ ОБУЧЕНИЕ: t.iss.one/ai_machinelearning_big_data
C++ t.iss.one/cpluspluc
Python: t.iss.one/pythonl
Linux: t.iss.one/linuxacademiya
Хакинг: t.iss.one/linuxkalii
Devops: t.iss.one/DevOPSitsec
АНАЛИЗ Данных: t.iss.one/data_analysis_ml
Javascript: t.iss.one/javascriptv
C#: t.iss.one/csharp_ci
Java: t.iss.one/javatg
Базы данных: t.iss.one/sqlhub
Python собеседования: t.iss.one/python_job_interview
Мобильная разработка: t.iss.one/mobdevelop
Docker: t.iss.one/DevopsDocker
Golang: t.iss.one/golang_interview
React: t.iss.one/react_tg
Rust: t.iss.one/rust_code
ИИ: t.iss.one/vistehno
PHP: t.iss.one/phpshka
Android: t.iss.one/android_its
Frontend: t.iss.one/front
Big Data: t.iss.one/bigdatai
Собеседования МЛ: t.iss.one/machinelearning_interview
МАТЕМАТИКА: t.iss.one/data_math
Kubernets: t.iss.one/kubernetc
Разработка игр: https://t.iss.one/gamedev

💼 Папка с вакансиями: t.iss.one/addlist/_zyy_jQ_QUsyM2Vi
Папка Go разработчика: t.iss.one/addlist/MUtJEeJSxeY2YTFi
Папка Python разработчика: t.iss.one/addlist/eEPya-HF6mkxMGIy
Папка ML: https://t.iss.one/addlist/2Ls-snqEeytkMDgy
Папка FRONTEND: https://t.iss.one/addlist/mzMMG3RPZhY2M2Iy

😆ИТ-Мемы: t.iss.one/memes_prog
🇬🇧Английский: t.iss.one/english_forprogrammers
🧠ИИ: t.iss.one/vistehno

🎓954ГБ ОПЕНСОРС КУРСОВ: @courses
📕Ит-книги бесплатно: https://t.iss.one/addlist/BkskQciUW_FhNjEy
👍3
🎓 Бесплатный курс. "Введение в компьютерное мышление и науку о данных" Массачусетского технологического института

Слайды: https://ocw.mit.edu/courses/6-0002-introduction-to-computational-thinking-and-data-science-fall-2016/pages/lecture-slides-and-files/
Видео: https://ocw.mit.edu/courses/6-0002-introduction-to-computational-thinking-and-data-science-fall-2016/video_galleries/lecture-videos/

@data_math
13👍5🔥3
Forwarded from Machinelearning
🌟 OLMo 2: Новое поколение полностью открытых языковых моделей.

OLMo 2 - серия открытых языковых моделей, созданная для развития науки о языковых моделях .

Модели OLMo 2 доступны в вариантах 7B и 13B параметров и обучены на массиве данных объемом 5 трлн. токенов. Они демонстрируют производительность, сопоставимую или превосходящую аналогичные по размеру полностью открытые модели на английских академических тестах.

Разработчики OLMo 2 уделили особое внимание стабильности обучения, используя методы RMSNorm, QK-Norm, Z-loss регуляризация и улучшенная инициализация.

Обучение проводилось в 2 этапа. На первом этапе модели обучались на датасете OLMo-Mix-1124 (3,9 трлн. токенов). На втором этапе использовался специально подобранный набор данных Dolmino-Mix-1124 (843 млрд. токенов), состоящий из веб-данных, материалов из академических источников, форумов вопросов и ответов, инструкций и математических задачников. Для объединения моделей, обученных на разных подмножествах данных, применялся метод "model souping".

Для оценки OLMo 2 была разработана система OLMES (Open Language Modeling Evaluation System) из 20 тестов для измерения способностей модели. OLMo 2 превзошел предыдущую версию OLMo 0424 по всем задачам и показал высокую эффективность по сравнению с другими открытыми моделями.

▶️Набор моделей OLMo 2:

🟢Базовые модели: OLMo-2-1124-7B и OLMo-2-1124-13B

🟠GGUF-версии: OLMo-2-1124-7B-GGUF и OLMo-2-1124-13B-GGUF

🟢Инструктивные версии: OLMo-2-1124-7B-Instruct и OLMo-2-1124-13B-Instruct

🟠DPO-версии: OLMo-2-1124-7B-DPO и OLMo-2-1124-13B-DPO

🟠SFT-версии: OLMo-2-1124-7B-SFT и OLMo-2-1124-13B-SFT

🟠Reward Model - версия OLMo-2-1124-7B-RM


▶️Пример инференса OLMo-2-7B c HF Transformers:

from transformers import AutoModelForCausalLM, AutoTokenizer
olmo = AutoModelForCausalLM.from_pretrained("allenai/OLMo-2-1124-7B")
tokenizer = AutoTokenizer.from_pretrained("allenai/OLMo-2-1124-7B")
message = ["Language modeling is "]
inputs = tokenizer(message, return_tensors='pt', return_token_type_ids=False)
# optional verifying cuda
# inputs = {k: v.to('cuda') for k,v in inputs.items()}
# olmo = olmo.to('cuda')
response = olmo.generate(**inputs, max_new_tokens=100, do_sample=True, top_k=50, top_p=0.95)
print(tokenizer.batch_decode(response, skip_special_tokens=True)[0])


📌Лицензирование: Apache 2.0 License.


🟡Страница проекта
🟡Набор моделей
🟡Demo
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #LLM #OLMo2
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍63🔥3💩1
Конспекты курса "Математический анализ 1 для отличников"

PDF: https://math.uwaterloo.ca/~baforres/UCM137/CourseNotes/Forrest_M137CN.pdf

@data_math
5👍5🔥2
Media is too big
VIEW IN TELEGRAM
📊 Игры хаоса. Фракталы

Насколько красивым и упорядоченным может быть хаос! Как нарисовать целый лес деревьев и растений, используя пару правил?

Теория хаоса, фракталы, аттракторы и подкрученные игровые кости – все это в новом переводе ролика от Numberphile.

@data_math
👍115🔥5
🎓 Конспекты курса Гарвардского университета "Продвинутый комплексный анализ"

PDF: https://people.math.harvard.edu/~ctm/papers/home/text/class/harvard/213a/course/course.pdf

@data_math
👍135🔥2👎1
Forwarded from Machinelearning
🌟 The Well: Масштабная коллекция физических симуляций для машинного обучения.

The Well – коллекция датасетов для машинного обучения, содержащая 15 ТБ данных численного моделирования различных физических систем. Коллекция состоит из 16 наборов данных из областей: биологии, гидродинамики, акустики, магнитогидродинамики, внегалактических субстанций и взрывы сверхновых.

Данные представлены в унифицированном формате HDF5, организованном в соответствии с общей спецификацией. Они сгенерированы на равномерных сетках и дискретизированы с постоянным временным шагом.

Файлы HDF5 содержат все доступные переменные состояния и пространственно-изменяющиеся коэффициенты в виде массивов NumPy в формате одинарной точности fp32. Доступны скалярные, векторные и тензорные поля, учитывая их различные свойства преобразования.

Каждый файл данных случайным образом разделен на обучающую, тестовую и валидационную выборки в соотношении 8:1:1. Детальное описание каждого набора данных представлено в таблицах, где указаны координатная система, разрешение снимков, количество временных шагов в траектории, общее количество траекторий в наборе данных, размер набора данных, время выполнения симуляций и используемое оборудование.

The Well предоставляет класс the_well для Python, который позволяет загружать и использовать данные в процессе обучения моделей. Для удобства большинство наборов размещены на Hugging Face, что позволяет получать данные напрямую через интернет.

▶️ Установка и пример использования c HF:

# Create new venv
python -m venv path/to/env
source path/to/env/activate/bin

# Instal from repo
git clone https://github.com/PolymathicAI/the_well
cd the_well
pip install .

# Streaming from Hugging Face
from the_well.data import WellDataset
from torch.utils.data import DataLoader

trainset = WellDataset(
well_base_path="hf://datasets/polymathic-ai/",
well_dataset_name="active_matter",
well_split_name="train",
)
train_loader = DataLoader(trainset)

for batch in train_loader:
...


📌Лицензирование кода : BSD-3-Clause License.

📌Лицензирование датасетов : CC-BY-4.0 License.


🟡Страница проекта
🟡Коллекция на HF
🟡Demo
🟡Arxiv
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #Dataset #TheWell
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
7👍3