Математика Дата саентиста
13.5K subscribers
393 photos
128 videos
37 files
339 links
Download Telegram
🛜 Находим пароль от Wi-fi из известного мема, с помощью Grok и Chatgpt.

GPT решил задачу численно, а Grok понял, что интеграл можно разбить на 2 части: первая - интеграл от нечетной функции по [-a,a] (которая равна 0), а вторая - площадь круга!

@data_math
👍284🔥4👎1🤡1🙈1
Forwarded from Machinelearning
🌟 Llama-3.1-Centaur-70B: модель симуляции поведения человека.

Centaur - модель, которая способная предсказывать и симулировать поведение человека в любом психологическом эксперименте, который можно описать на естественном языке.

Это первая модель, соответствующая большинству критериев Ньюэлла для универсальной теории познания, включая способность действовать как почти произвольная функция окружающей среды и работать в реальном времени.

Centaur создана на основе Llama 3.1 70B и дообучена на наборе данных Psych-101, включающем данные 60 000 участников, давших суммарно 10 000 000 ответов в 160 психологических экспериментах.

Psych-101 охватывает широкий спектр областей когнитивной науки: игровые автоматы, принятие решений, память, обучение с учителем, процессы принятия решений Маркова и др.

Centaur дообучалась методом QLoRA: к каждому слою базовой Llama 3.1 70B были добавлены низкоранговые адаптеры, при этом параметры базовой модели остались неизменными.

Обучение проводилось на всем наборе данных с использованием стандартной функции потерь кросс-энтропии. Потери маскировались для всех токенов, не соответствующих ответам людей, чтобы итоговая модель фокусировалась на моделировании поведения человека.

В большинстве проведенных экспериментов Centaur превосходит как базовую модель Llama, так и специализированные когнитивные модели, разработанные для конкретных областей психологии.

Кроме того, Centaur обобщает знания на "незнакомые" ситуации, которые не входили в датасет обучения: точно предсказывает поведение при измененных формулировках задач, структурах проблем и даже в совершенно новых областях.

Важный результат экспериментального тестирования - соответствия внутренних представлений Centaur нейронной активности человека.

Это открытие было подтверждено 2 исследованиями, в которых внутренние представления модели использовались для предсказания активности мозга. Centaur продемонстрировала улучшенную декодируемость по сравнению с Llama в задачах, связанных с чтением предложений и выполнением двухэтапных задач.

⚠️ Centaur обучена на наборе данных, в котором выбор человека выражается символами "<<" и ">>".
Для оптимальной работы рекомендуется соответствующим образом настроить промпты.

⚠️ Модель запускается на 80 GB GPU.


📌Лицензирование: Llama 3.1 Community License.

📌Лицензирование датасета : Apache 2.0 License.


🟡Модель
🟡Техотчет
🟡Датасет


@ai_machinelearning_big_data

#AI #ML #LLM #Centaur
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍112
This media is not supported in your browser
VIEW IN TELEGRAM
⚡️ ЛУЧШЕЕ ДОКАЗАТЕЛЬСТВО теоремы Синусов

📌 источник

@data_math
👍246🫡2🔥1
🕓 Крутые часы для математика

@data_math
🔥25👍95🤮2🥴2🥰1😁1
🔥 Курс «Основы искусственного интеллекта» — Python, машинное обучение, глубокое обучение, наука о данных!

🕞 Продолжительность: 10:22:25

🔗 Ссылка: *клик*

#курс #ai #datascience #deeplearning

@data_math
Please open Telegram to view this post
VIEW IN TELEGRAM
👍14🔥53
⚡️ Математические формулы с помощью Python

@data_math
👍30🔥134
Forwarded from Machinelearning
📌Руководство по эффективному использованию промптов для LLM от разработчиков из GoogleDeepMind.

Туториал ориентируется на нетехническую аудиторию, которая имеет опыт взаимодействия с большими языковыми моделями.

В первой половине представлены ментальные конструкции природы посттренинга и промптов. Вторая половина содержит более конкретные предписания и высокоуровневую процедуру промпт-инжиниринга.

Авторы, Varun Godbole и Ellie Pavlick подчеркивают, что поиск «идеальной» подсказки — это итеративный процесс, аналогичный настройке модели, который в лучшем случае является эмпирическим, а в худшем - алхимическим.

▶️ Содержание:

🟢Для кого предназначен этот документ?
🟢Зачем нужно это руководство?
🟢Background трейна: предварительная и последующая подготовка
🟢Рекомендации по промптам
🟢Рудиментарное "руководство по стилю" для промптов
🟢Процедура итерации новых системных инструкций
🟢Некоторые мысли о том, когда полезна LLM
🟢Дополнительные ресурсы


📌Лицензирование: Creative Commons Attribution 4.0 International Public License.


🖥GitHub


@ai_machinelearning_big_data

#AI #ML #LLM #Prompt #Github #Tutorial
Please open Telegram to view this post
VIEW IN TELEGRAM
👍6🔥3💩1
⚡️ Курс: Прикладное машинное обучение - Cornell CS5785

"Начинается с самых основ, рассказывается обо всех наиболее важных алгоритмах ML и о том, как применять их на практике. Готовые ноутбук Jupyter (и в виде слайдов)".

80 видеороликов!!

Видео: https://youtube.com/playlist?list=PL2UML_KCiC0UlY7iCQDSiGDMovaupqc83
Код: https://github.com/kuleshov/cornell-cs5785-2020-applied-ml

@data_math
👍20🔥64
✔️ FrontierMath: набор тестов по математике, который ставит в тупик модели ИИ и кандидатов наук.

Epoch AI представила FrontierMath, математический тест, который содержит сотни задач экспертного уровня. Claude 3.5 Sonnet, GPT-4o, o1-preview и Gemini 1.5 Pro показали крайне низкие результаты - менее 2%, а для решения задач теста математикам-специалистам обычно требуются часы или дни.

Набор задач в FrontierMath остается закрытым и неопубликованным, чтобы предотвратить загрязнение данных. Задачи охватывают несколько математических дисциплин, от вычислительной теории чисел до абстрактной алгебраической геометрии.
Epoch AI планирует проводить регулярную оценку моделей ИИ с помощью теста, одновременно расширяя набор задач.

📌 epoch.ai

@data_math
Please open Telegram to view this post
VIEW IN TELEGRAM
👍15🔥54
👨‍🎓 Конспекты лекций от Стэнфорда по теории вероятностей (уровень кандидата наук)

https://web.stanford.edu/class/stats310a/lnotes.pdf

@data_math
👍275🔥3
⚡️Легкий способ получать свежие обновления и следить за трендами в разработке на вашем языке. Находите свой стек и подписывайтесь:

МАШИННОЕ ОБУЧЕНИЕ: t.iss.one/ai_machinelearning_big_data
C++ t.iss.one/cpluspluc
Python: t.iss.one/pythonl
Linux: t.iss.one/linuxacademiya
Хакинг: t.iss.one/linuxkalii
Devops: t.iss.one/DevOPSitsec
Data Science: t.iss.one/datascienceiot
Javascript: t.iss.one/javascriptv
C#: t.iss.one/csharp_ci
Java: t.iss.one/javatg
Базы данных: t.iss.one/sqlhub
Python собеседования: t.iss.one/python_job_interview
Мобильная разработка: t.iss.one/mobdevelop
Docker: t.iss.one/DevopsDocker
Golang: t.iss.one/Golang_google
React: t.iss.one/react_tg
Rust: t.iss.one/rust_code
ИИ: t.iss.one/vistehno
PHP: t.iss.one/phpshka
Android: t.iss.one/android_its
Frontend: t.iss.one/front
Big Data: t.iss.one/bigdatai
Собеседования МЛ: t.iss.one/machinelearning_interview
МАТЕМАТИКА: t.iss.one/data_math
Kubernets: t.iss.one/kubernetc
Разработка игр: https://t.iss.one/gamedev

💼 Папка с вакансиями: t.iss.one/addlist/_zyy_jQ_QUsyM2Vi
Папка Go разработчика: t.iss.one/addlist/MUtJEeJSxeY2YTFi
Папка Python разработчика: t.iss.one/addlist/eEPya-HF6mkxMGIy
Папка ML: https://t.iss.one/addlist/2Ls-snqEeytkMDgy
Папка FRONTEND: https://t.iss.one/addlist/mzMMG3RPZhY2M2Iy

😆ИТ-Мемы: t.iss.one/memes_prog
🇬🇧Английский: t.iss.one/english_forprogrammers
🧠ИИ: t.iss.one/vistehno

🎓954ГБ ОПЕНСОРС КУРСОВ: @courses
📕Ит-книги бесплатно: https://t.iss.one/addlist/BkskQciUW_FhNjEy
2👍1🥰1
Обработка естественного языка

1. Введение в обработку естественного языка
2. Решаем задачи NLP с помощью Hugging Face
3. Выбор модели в Hugging Face
4. Что внутри пайплайна обработки текста?
5. Почему обрабатывать текст сложно?
6. Графематический анализ
7. Как разбить русский текст на токены
8. Морфологический анализ
9. Библиотеки морфологического анализа
10. Синтаксический анализ

#video

https://www.youtube.com/watch?v=55Iyei3bkKk&list=PLtPJ9lKvJ4ohZpMV9Ml-DPtMSXPFNl6Sz
👍93
ЛИНЕЙНАЯ_АЛГЕБРА_АНАЛИТИЧЕСКАЯ_ГЕОМЕТРИЯ.pdf
1.5 MB
✔️ ЛИНЕЙНАЯ АЛГЕБРА АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ
А. М. ИВЛЕВА, П. И. ПРИЛУЦКАЯ, И. Д. ЧЕРНЫХ (2014)

В пособии подобраны задачи по курсу линейной алгебры и аналитической геометрии, читаемому на I курсе всех факультетов НГТУ.

Теоретический материал пособия и приведенные решения типовых задач способствуют лучшему усвоению материала, самостоятельной работе и приобретению навыков решения задач, необходимых для успешной подготовки к экзамену.

Авторы не претендуют на абсолютно корректное из- изложение теоретического материала, упростив его для улучшения понимания.


@data_math
Please open Telegram to view this post
VIEW IN TELEGRAM
11🔥4👍3
This media is not supported in your browser
VIEW IN TELEGRAM
💼 PhySO | DL-регрессия для подбора функции

Инструмент, который использует глубокое обучение с подкреплением для подбора наиболее подходящей функции, описывающей заданные данные.

📌 Репозиторий

@data_math
👍18🔥73😱2
🔥 Крутая шпаргалка по машинному обучению!

В этой шпаргалке представлен весь мир машинного обучения. На ней выделены следующие ключевые направления:

Регрессия: OLS, SVM, Random Forest
Классификация: Naive Bayes, Decision Tree, нейронные сети
Кластеризация: K-Means, DBSCAN
Компьютерное зрение: CNN, YOLO, GANs
NLP/LLM: GPT, BERT, Word2Vec
Рекомендательные системы, прогнозирование
🔥21👍114🤔1🤮1
✔️ DeepSeek представила модель, превосходящую OpenAI-o1.

Компания DeepSeek выпустила R1-Lite-Preview — новую большую языковую модель, ориентированную на рассуждения. Модель, доступная только через веб-чат DeepSeek Chat и демонстрирует производительность, близкую, а в некоторых случаях и превосходящую, модель OpenAI o1-preview по результатам тестов AIME (American Invitational Mathematics Examination) и MATH.

R1-Lite-Preview использует метод «цепочки рассуждений», показывая пользователю этапы своего "мыслительного" процесса. Компания планирует в будущем выпустить R1 с открытым исходным кодом.

На данный момент подробной технической информации о модели пока нет, однако разработчики обещают вскоре опубликовать как веса модели, так и доступ к API. В настоящее время доступны лишь показатели производительности и графики масштабируемости. Как и в случае с OpenAI, эффективность работы DeepSeek увеличивается пропорционально длине цепочки логических выводов. Кроме того, в отличие от o1, в чате отображаются полные цепочки рассуждений без со

venturebeat.com
Please open Telegram to view this post
VIEW IN TELEGRAM
👍145🔥2
This media is not supported in your browser
VIEW IN TELEGRAM
〰️ Анимация: Производные и интегралы синуса и косинуса образуют единичную окружность

https://geogebra.org/u/daniel+mentrard

@data_math
👍187🔥3👎2