Математика Дата саентиста
13.5K subscribers
394 photos
128 videos
37 files
340 links
Download Telegram
🛞 Математики изобретают колесо в более высоких измерениях, чтобы решить старую геометрическую проблему:

https://scientificamerican.com/article/mathematicians-reinvent-the-wheel-in-higher-dimensions-to-solve-decades-old/

#Математика

@data_math
👍82🔥2
Бесплатный курс с теорией и практикой математики для Data Science.

Никакой лишней воды, только то, что действительно нужно для работы с ML, и всё это с примерами кода. Приятный бонус — можно выбрать диалект для примеров (PyTorch, Keras или MXNET).

Кстати, остальные главы курса тоже на высоте.

https://d2l.ai/chapter_appendix-mathematics-for-deep-learning/index.html

@data_math
👍226🔥6
InfinityMATH

Масштабируемый набор данных для настройки математических моделей

InfinityMATH, масштабируемый набор данных для настройки моделей для математического анализа.

Эксперименты по точной настройке языков и моделей кода с открытым исходным кодом, таких как Llama2 и CodeLlama, демонстрируют практические преимущества InfinityMATH.

Эти точно настроенные модели показали значительные улучшения, составив в среднем от 184,7% до 514,3% процентов прироста.

Кроме того, эти модели продемонстрировали хорошие оценки надежность в тестах GSM8K+ и MATH+, которые представляют собой усовершенствованную версию тестовых наборов с простым изменением количества тестов.

InfinityMATH делает модели более универсальными и эффективными для решения широкого круга математических задач.

https://huggingface.co/papers/2408.07089
👍51🔥1
🖥 Python для сетевых инженеров

🔥 Очень полезная открытая книга для сетевых инженеров с опытом программирования и без.
Все примеры и домашние задания построены с уклоном на сетевое оборудование.
Для тех, кто хочет автоматизировать повседневные задачи и заняться программированием, но не знает, с какой стороны подойти.

📎 Книга

@data_math
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍8🔥42
Собеседования

1. Открытое собеседование на Middle Data Scientist. Секция Python и работы с данными
2. Открытое собеседование на Middle Data Scientist. Секция ML
3. Выпуск 4: System Design собеседование с Валерием Бабушкиным
4. Mock собеседование на Junior Data Scientist
5. Выпуск 3: System Design собеседование с Валерием Бабушкиным
6. Выпуск 2: System Design собеседование с Валерием Бабушкиным
7. Выпуск 1: System Design собеседование с Валерием Бабушкиным
8. Открытое собеседование на позицию игрового аналитика
9. Выпуск 3: ML System Design собеседование с Валерием Бабушкиным
10. Техническое собеседование на позицию junior аналитика

#video

https://www.youtube.com/watch?v=6adGYmQeJNw&list=PLBRXq5LaddfzDBjg6soIwJJA2klXXs6ni
🔥9👍21
⚡️ Awesome math – курируемый список полезных ресурсов по математике

Здесь собраны различные материалы по таким темам как:
• Основы математики
• Теория чисел
• Алгебра
• Комбинаторика
• Числовой анализ
• Обработка сигналов
• Математика для компьютерных наук
• Математическая биология
• Математическая физика

https://github.com/rossant/awesome-math

#GitHub | #Archive

@data_math
8👍4🔥31
Forwarded from Machinelearning
🌟DeepSeek-Prover: Proof Assistant Feedback for Reinforcement Learning and Monte-Carlo Tree Search.

DeepSeek-Prover-V1.5 - набор из языковых моделей для доказательства теорем в Lean 4.
"V1.5" означает обновление DeepSeek-Prover-V1 с некоторыми ключевыми нововведениями.

Во-первых, процесс обучения: предварительная подготовка на базе DeepSeekMath, затем контрольная работа с набором данных, включающим логические комментарии на естественном языке и код Lean 4. Это устраняет разрыв между рассуждениями на естественном языке и формальным доказательством теоремы. В набор данных также входит информация о промежуточном тактическом состоянии, которая помогает модели эффективно использовать обратную связь с компилятором.

Во-вторых, проводится обучение с подкреплением, используя алгоритм GRPO для изучения обратной связи с помощником по проверке. Тут выравнивается соответствие модели формальным спецификациям системы проверки.

В-третьих, RMaxTS, варианте поиска в дереве по методу Монте-Карло. Он присваивает встроенные вознаграждения на основе изучения тактического пространства состояний, побуждая модель генерировать различные пути доказательства. Это приводит к более обширному исследованию пространства доказательств.

В результате получился набор моделей с абсолютной точностью генерации в 46,3% на тестовом наборе miniF2F. Этот показатель лучше, чем у GPT-4 и моделей RL, специализирующихся на доказательстве теорем.

Набор DeepSeek-Prover:

🟠DeepSeek-Prover-V1.5 Base. Идеально подходит для первоначального изучения и понимания возможностей модели и основ для формальных математических рассуждений, но требует дальнейшего обучения для оптимальной работы;
🟠DeepSeek-Prover-V1.5 SFT. Модель для задач, требующих умеренных навыков доказательства теорем за счет рассуждений на естественном языке и информации о тактическом состоянии.
🟠DeepSeek-Prover-V1.5 RL. Рекомендуется для решений, требующих высочайшей точности и производительности при формальном доказательстве теорем. К SFT-версии добавлены дополнительная оптимизация на основе Proof Assistant Feedback и обучение с подкреплением.

▶️Установка и запуск:
# Clone the repository:
git clone --recurse-submodules [email protected]:deepseek-ai/DeepSeek-Prover-V1.5.git
cd DeepSeek-Prover-V1.5

# Install dependencies:
pip install -r requirements.txt

# Build Mathlib4:
cd mathlib4
lake build

# Run paper experiments:
python -m prover.launch --config=configs/RMaxTS.py --log_dir=logs/RMaxTS_results



📌Лицензирование кода репозитория: MIT license

📌Лицензирование моделей: DEEPSEEK License


🟡Набор моделей
🟡Arxiv
🟡Датасет
🟡Сообщество в Discord
🖥Github [ Stars: 53 | Issues: 0 | Forks: 1]


@ai_machinelearning_big_data

#AI #LLM #Math #ML
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍82🔥21
⚡️Легкий способ получать свежие обновления и следить за трендами в разработке на вашем языке. Находите свой стек и подписывайтесь:

МАШИННОЕ ОБУЧЕНИЕ: t.iss.one/ai_machinelearning_big_data
C++ t.iss.one/cppsobes
Python: t.iss.one/pro_python_code
Хакинг: t.iss.one/linuxkalii
Devops: t.iss.one/devOPSitsec
АНАЛИЗ Данных: t.iss.one/data_analysis_ml
Javascript: t.iss.one/javascriptv
C#: t.iss.one/csharp_ci
Java: t.iss.one/javatg
Базы данных: t.iss.one/sqlhub
Linux: t.iss.one/linuxacademiya
Python собеседования: t.iss.one/python_job_interview
Мобильная разработка: t.iss.one/mobdevelop
Docker: t.iss.one/DevopsDocker
Golang: t.iss.one/Golang_google
React: t.iss.one/react_tg
Rust: t.iss.one/rust_code
PHP: t.iss.one/phpshka
Android: t.iss.one/android_its
Frontend: t.iss.one/front
Big Data: t.iss.one/bigdatai
Собеседования МЛ: t.iss.one/machinelearning_interview
МАТЕМАТИКА: t.iss.one/data_math
Kubernets: t.iss.one/kubernetc


💼 Папка с вакансиями: t.iss.one/addlist/_zyy_jQ_QUsyM2Vi
Папка Go разработчика: t.iss.one/addlist/MUtJEeJSxeY2YTFi
Папка Python разработчика: t.iss.one/addlist/eEPya-HF6mkxMGIy
Папка ML: https://t.iss.one/addlist/2Ls-snqEeytkMDgy
Папка FRONTEND: https://t.iss.one/addlist/mzMMG3RPZhY2M2Iy

😆ИТ-Мемы: t.iss.one/memes_prog
🇬🇧Английский: t.iss.one/english_forprogrammers
🧠ИИ: t.iss.one/vistehno

🎓954ГБ ОПЕНСОРС КУРСОВ: @courses
📕Ит-книги бесплатно: https://t.iss.one/addlist/BkskQciUW_FhNjEy
🔥41
Forwarded from Machinelearning
⚡️ Hermes 3: Семейство finetune Llama 3.1 от Nous Research

Новый набор моделей от Nous Research был создан на основе Llama 3.1 8B, 70B и 405B файнтюном датасета из синтетически сгенерированных ответов. Hermes 3 получил производительность Llama 3.1 и расширенные возможности в мышлении и творчестве.

Hermes 3 разблокирован, не подвергается цензуре и обладает высокой степенью управляемости. Он обладает улучшенной функцией долговременного сохранения контекста и возможностью ведения длинного диалога, навыком сложной ролевой игры и внутреннего монолога, а также расширенной функцией вызова агентов.
Модели семейства умеют точно и адаптивно следовать системным промптам и инструкциям.

В Hermes 3 возникают аномальные состояния, которые при правильных вводных и пустых системных подсказках приводят к ролевой игре и потере памяти. Вы можете активировать этот “Режим амнезии” в Hermes 3 405B, введя пустой системный запрос и отправив сообщение "Кто вы?".

Hermes 3 использует ChatML для формата промптов. Формат более сложный, чем alpaca или sharegpt, в нем используются специальные токены для обозначения начала и окончания логического контекста и ролей в этих контекстах.

Набор Hermes 3:

🟠Hermes 3 - Llama-3.1 405B;
🟠Hermes 3 - Llama-3.1 405B FP8 для использования с vLLM;
🟠Hermes 3 - Llama-3.1 70B;
🟠Hermes 3 - Llama-3.1 70B FP8 для использования с vLLM;
🟢Hermes 3 - Llama-3.1 70B GGUF для использования с llama.cpp. Версии квантования от 3-bit (31 Gb) до 5-bit (50 GB);
🟠Hermes 3 - Llama-3.1 8B;
🟢Hermes 3 - Llama-3.1 8B GGUF для использования с llama.cpp. Версии квантования от 4-bit (5 Gb) до 8-bit (9 GB);

📌Лицензирование : Llama 3 Community License


🟡Страница проекта
🟡Сообщество в Discord
🟡Набор моделей
🟡Arxiv
🟡Demo



@ai_machinelearning_big_data

#AI #Hermes3 #LLM #ML
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍52🔥21👎1
⚡️ microMathematics Plus

Это мощный визуальный калькулятор для Android, предназначенный для студентов и всех, кто интересуется математикой или нуждается в чем-то большем, чем обычный калькулятор.

Он предлагает следующие функции:

- Работа на смартфоне или планшете в портретном и альбомном режимах;
- Поддержка всех популярных математических операций;
- Поддержка единиц измерения SI и не-SI;
- Мощный математический редактор с сенсорным экраном и функцией отмены;
- Возможность выполнения нескольких вычислений и последующего исправления или изменения всех использованных формул;
- Математические выражения собираются в документ, который включает не только формулы и графики, но и дополнительный текст и изображения и многое другое.

📌 GitHub

@data_math
👍19🔥32
Forwarded from Machinelearning
🌟 Lite Oute 2 Mamba2Attn: базовая и инструктивная SLM на архитектуре Mamba2.


OuteAI выпустила второе поколение легких моделей на 250М параметров каждая :

🟢 Lite Oute 2 Mamba2Attn 250M Base
🟢 Lite Oute 2 Mamba2Attn 250M-Instruct

В модели интегрирован механизм Mamba2Attn - усовершенствованный метод внимания, который повышает способность модели фокусироваться на важных частях входных данных. Этот механизм особенно полезен для задач NLP, требующих понимания сложных закономерностей или взаимосвязей в данных.

Интегрировав Mamba2Attn, разработчикам удалось сохранить релевантную для своего класса малых моделей производительность, уменьшив при этом ее размер и вычислительные требования.

Базовая модель была обучена на 30 миллиардах токенов из корпуса данных, структура которого - 50% датасета dclm-baseline-1.0 b 50% fineweb-edu. Инструктивная версия прошла дообучение с SFT и DPO.

Обе модели имеют 4 слоя внимания из общего количества 32, такая конфигурация позволяет минимизировать потери при проверке, что подтверждено исследованием о соотношении слоев самовнимания к MLP.

▶️ Рекомендованные параметры для Instruct - модели:

🟢Temperature: 0.1 - 0.4
🟢Repetition Penalty: 1.10 - 1.12

▶️Ограничения:

🟠Непоследовательная точность. Примите во внимание, что обе модели - малого размера, инференс в некорорых задачах может быть неполным или неточным;
🟠Отсутствие глубины контекста. В некоторых задачах, модели могут не соответствовать ожиданиям глубины запоминания контекста;
🟠Баланс лаконичности. Модель иногда испытывает трудности с балансом между краткостью и детализацией, давая либо слишком краткие ответы, либо излишне повторяя заданную информацию.


📌Лицензирование : Apache 2.0 License


🟡Страница проекта
🟡Набор моделей
🟡Arxiv
🟡Сообщество в Discord


@ai_machinelearning_big_data

#AI #SLM #Mamba2 #ML #Oute
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
4👍2🔥2🤩1
Forwarded from Machinelearning
⚡️ Qwen2-VL: второе поколение VLM моделей от Alibaba Cloud.

Qwen2-VL - это новая версия VLMs, основанная на Qwen2 в семействе моделей Qwen. По сравнению предыдущим поколением, Qwen2-VL обладает возможностями:

🟢Распознавание изображений с различным разрешением и соотношением сторон;
🟢VQA-понимание видеороликов продолжительностью более 20 минут с поддержкой диалога;
🟢Интеграция с носимыми устройствами (мобильный телефон, робот и т.д) в качестве агента управления;
🟢Мультиязычность внутри входных данных, например на изображениях или видео.
🟢Улучшенное распознавание объектов и предметов;
🟢Расширенные возможности в области математики и понимания программного кода.

Набор Qwen2-VL состоит из трех основных моделей, две из которых публикуются в отrрытом доступе. Модель Qwen2-VL-72B доступна только по API:

🟠Qwen2-VL-72B;
🟢Qwen2-VL-7B-Instruct;
🟢Qwen2-VL-2B-Instruct,

и их квантованные версии в форматах AWQ и GPTQ в разрядностях Int8 и Int4.

Архитектура моделей. как и в прошлом поколении основана на ViT 600M и LLM Qwen2, но с добавлением двух ключевых модификаций:

🟠использование NDR (Naive Dynamic Resolution), который позволил обрабатывать входные данные любого разрешения, преобразуя их в динамическое количество визуальных токенов. Эта реализация максимально близка к имитации зрительного восприятия человека.

🟠технология Multimodal Rotary Position Embedding (M-ROPE). Благодаря деконструкции оригинального rotary embedding на три части, представляющие временную и пространственную информацию, M-ROPE дает возможность LLM одновременно захватывать 1D( текст ), 2D( визуал ) и 3D( видео ) информацию.

⚠️ Ограничения в возможностях и слабые стороны поколения состоят в том, что модели не умеют извлекать звук из видео, а их знания актуальны на июнь 2023 года.

Кроме того, они не могут гарантировать полную точность при обработке сложных инструкций или сценариев. Модели относительно слабы в задачах, связанных со счетом, распознаванием символов и трехмерным пространственным восприятием.

▶️Использование и интеграция Qwen2-VL возможна с инструментами и на фреймворках: Transformers, vLLM, Llama-Factory, AutoGPTQ, AutoAWQ.


📌Лицензирование: Apache 2.0 License.


🟡Страница проекта
🟡Набор моделей
🟡Demo
🟡Сообщество в Discord
🖥Github [ Stars: 59 | Issues: 3 | Forks: 2]


@ai_machinelearning_big_data

#AI #Qwen #ML #GPTQ #VLM #AWQ
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
5👍4🔥2