Особенно актуально будет для тех, кто занимается научными вычислениями
Темы разобраны очень подробно, даже фундаментально, я бы сказал
Охват тем вы видите ниже
О python • Установка python • Python в качестве калькулятора • Скрипты python • Блокноты. Jupyter Notebooks • Основные типы объектов: числа и списки • Операторы потока управления
Компилируемость vs Интерпретируемость • Динамическая типизация • Аннотация типов • Изменяемые и неизменяемый типы объектов • Создание и удаление объектов. Сборщик мусора • О коллекциях в python • Последовательности: списки, кортежи и строки
Сторонние библиотеки и пакетные менеджеры • NumPy • Векторизация • Срезы • Умножение векторов • Логические операции • Векторизация на примере вычисления статистик • Случайные числа
Словари. dict • Функции • Взаимодействие с файловой системой • Работа с файлами. Сериализация: json и pickle • Построение графиков и визуализация данных • Matplotlib • Настройка деталей графиков • Анимация в matplotlib
Таблицы • Библиотека pandas • Столбцы в pandas • Таблицы pandas • Оперирование таблицами pandas • Дата и время • Анализ данных
Основы списковых включений • Итераторы • Генераторы • Декораторы
SciPy • Линейная алгебра • Дифференцирование и интегрирование функций • Поиск минимума • Решение нелинейных уравнений • Интерполяция и аппроксимация • Решение ОДУ • Обработка сигналов
Пользовательские классы • Наследование • Полиморфизм в python • Перегрузка специальных методов и операторов
Исключения • Пользовательские исключения • Стратегии контроля ошибок
Графический пользовательский интерфейс • PySide. Основы • События • Слоты и сигналы • Виджеты и макеты • Кнопки • Вывод данных • Ввод данных • Диалоговые окна
@data_math
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍21❤6👎1🔥1💩1
Forwarded from Machine learning Interview
🎲 Теория вероятностей пронизывает все сферы науки о данных.
Вероятностные модели и используются практически во всех алгоритмах машинного обучения.
Функции штрафа в задачах регрессии или ошибок классификации основаны на понятии математического ожидания, закона больших чисел, а центральная предельная теорема служит основанием для доказательства сходимости и состоятельности многих алгоритмов и методов анализа данных.
Полезные материалы для подготовки к вопросам по терверу:
▪ Теория вероятностей (на основе программы для поступления в ШАД)
▪Самые популярные ЗАДАЧИ на ТЕРВЕР на собеседовании АНАЛИТИКА
▪ R для теории вероятностей и математической статистики"
▪Книга: Математика в машинном обучении
▪Статистика для экспериментов от Harvard University
▪Учебное пособие Математическая статистика
▪Наука о данных 19 вопросов с Интервью по терверу
@machinelearning_interview
Вероятностные модели и используются практически во всех алгоритмах машинного обучения.
Функции штрафа в задачах регрессии или ошибок классификации основаны на понятии математического ожидания, закона больших чисел, а центральная предельная теорема служит основанием для доказательства сходимости и состоятельности многих алгоритмов и методов анализа данных.
Полезные материалы для подготовки к вопросам по терверу:
▪ Теория вероятностей (на основе программы для поступления в ШАД)
▪Самые популярные ЗАДАЧИ на ТЕРВЕР на собеседовании АНАЛИТИКА
▪ R для теории вероятностей и математической статистики"
▪Книга: Математика в машинном обучении
▪Статистика для экспериментов от Harvard University
▪Учебное пособие Математическая статистика
▪Наука о данных 19 вопросов с Интервью по терверу
@machinelearning_interview
🔥17👍7❤4
🔥 Лекций МФТИ "Теория вероятностей" от А.М.Райгородского
1. Геометрическая вероятность. Условная вероятность и независимость событий
2. Формула полной вероятности и формула Байеса. Схема испытаний Бернулли
3. Случайные графы. Полиномиальная схема. Конечное вероятностное пространство. Аксиоматика Колмогорова
4. Предельные теоремы схемы испытаний Бернулли. Случайные величины и функции распределения (начало)
5. Случайные величины и функции распределения (продолжение)
6. Математические ожидания случайной величины. Независимость случайных величин, корреляция
7. Неравенства Маркова и Чебышёва. Свойства дисперсии случайной величины
8. Закон больших чисел. Неравенства уклонения в случайном блуждании
9. Формула обращения. Многомерные функции распределения
10. Распределения случайных векторов. Вероятностная сходимость
11. Сходимость по распределению. Усиленный закон больших чисел
12. Характеристические функции. Центральная предельная теорема
13. Центральная предельная теорема (продолжение)
@data_math
1. Геометрическая вероятность. Условная вероятность и независимость событий
2. Формула полной вероятности и формула Байеса. Схема испытаний Бернулли
3. Случайные графы. Полиномиальная схема. Конечное вероятностное пространство. Аксиоматика Колмогорова
4. Предельные теоремы схемы испытаний Бернулли. Случайные величины и функции распределения (начало)
5. Случайные величины и функции распределения (продолжение)
6. Математические ожидания случайной величины. Независимость случайных величин, корреляция
7. Неравенства Маркова и Чебышёва. Свойства дисперсии случайной величины
8. Закон больших чисел. Неравенства уклонения в случайном блуждании
9. Формула обращения. Многомерные функции распределения
10. Распределения случайных векторов. Вероятностная сходимость
11. Сходимость по распределению. Усиленный закон больших чисел
12. Характеристические функции. Центральная предельная теорема
13. Центральная предельная теорема (продолжение)
@data_math
🔥22👍7❤4⚡1
Различные способы вычисления значения π с использованием формулы Лейбница.
https://www.peterbe.com/plog/leibniz-formula-for-pi
@data_math
Please open Telegram to view this post
VIEW IN TELEGRAM
👍12❤5👎2🔥2
Forwarded from Анализ данных (Data analysis)
This media is not supported in your browser
VIEW IN TELEGRAM
👨🎓 100 лекций по математике от Оксфорда
Оксфорд публикует лекции по математике, чтобы дать представление об опыте студентов и о том, как они преподают математику в Оксфорде.
В этом плейлисте собраны лекции из различных курсов за все студенческие годы (включая целые курсы).
За всеми лекциями следуют учебные занятия, на которых студенты встречаются со своим преподавателем и решают задачи.
Примерно 80 часов отборной математики.
• Плейлист
@data_analysis_ml
Оксфорд публикует лекции по математике, чтобы дать представление об опыте студентов и о том, как они преподают математику в Оксфорде.
В этом плейлисте собраны лекции из различных курсов за все студенческие годы (включая целые курсы).
За всеми лекциями следуют учебные занятия, на которых студенты встречаются со своим преподавателем и решают задачи.
Примерно 80 часов отборной математики.
• Плейлист
@data_analysis_ml
🔥19👍5❤3
Forwarded from Machinelearning
🐇📚 Alice’s Adventures in a
differentiable wonderland: Aprimer on designing neural networks
Алиса отправляется в дифференцируемую страну чудес!* 🔥
Новая бесплатная книга по проектированию нейронных сетей.
Отправляемся в увлекательное приключение по миру математики нс, от самых азов до трансформеров.
Отличный баланс между теорией и кодом, с историческими справками и описанием современных тенденций развития нс.
Приятный бонус это красивый дизайн и приятные иллюстрации.
Отличное приключение на выходные)
.
📓 Book
@ai_machinelearning_big_data
differentiable wonderland: Aprimer on designing neural networks
Алиса отправляется в дифференцируемую страну чудес!* 🔥
Новая бесплатная книга по проектированию нейронных сетей.
Отправляемся в увлекательное приключение по миру математики нс, от самых азов до трансформеров.
Отличный баланс между теорией и кодом, с историческими справками и описанием современных тенденций развития нс.
Приятный бонус это красивый дизайн и приятные иллюстрации.
Отличное приключение на выходные)
.
📓 Book
@ai_machinelearning_big_data
❤10🔥6👍3
Цель библиотеки CGAL — обеспечить легкий доступ к эффективным и надежным алгоритмам вычислительной геометрии.
@data_math
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
❤8👍2🔥2
🔥Подборка лучших обучающих каналов для программистов.
➡️ Делитесь с коллегами и сохраняйте себе, чтобы не потерять
⚡Машинное обучение
Machine Learning - запускаем лучшие ИИ модели, пишем код, погружаемся в нейросети
Ml Собеседование - подготовка к собесу по мл, алгоритмам, коду
Ml ru - актуальные статьи, новости, код и обучающие материалы
Ml Jobs - вакансии ML
ML Книги - актуальные бесплатные книги МО
ML чат
🏆 Golang
Golang
Golang собеседование - разбор задач и вопросов с собесов
Golang вакансии -работа для Go разработчика
Golang книги библиотека книг
Golang задачи и тесты
Golang чат
Golang news - новости из мира go
Golang дайджест
💥 Linux /Этичный хакинг
Linux Academy - гайды, секреты и лучшие материалы по Linux
Kali linux - погрузись в мир этичного хакинга и кибербезопасности
linux_kal - kali чат
Информационная безопасность
🚀 Data Science
Анализ данных - полезные фишки, код, гайды и советы, маст-хэв датасаентиста
Data Jobs - ds вакансии
Аналитик данных
Data Science книги - актуальные бесплатные книги
Big data
🛢Базы данных
Sql базы данных - научим работе с базами данных профессионально
Библиотека баз данных
SQL чат
Вакансии Sql аналитик данных
#️⃣C#
С# академия - лучший канал по c#
С# заметки — код, лучшие практики, заметки программиста c#
С# задачи и тесты
С# библиотека - актуальные бесплатные книги
C# вакансии - работа
🐍 Python
Python/django - самый крупный обучающий канал по Python
Python Собеседование - подготовка к собеседовению python и разбор алгоритмов
Pro python - статьи, новости, код и обучающие материалы
Python Jobs - вакансии Python
Python чат
Python книги
☕ Java
Java академия - java от Senior разработчика
Java вакансии
Java чат
Java вопросы с собеседований
Java книги
💻 C++
C++ академия
С++ книги
C++ задачи - подготовка к собеседовению мл, алгоритмам
C++ вакансии
⚡️ Frontend
Javascript академия - крупнейший js канал
React - лучшие гайды и советы по работе с react
Frontend - тутрориалы, уроки, гайды, код
PHP
Книги frontend
Задачи frontend
🦀 Rust
Rust программирование
Rust чат
Rust книги для программистов
📲 Мобильная разработка
Android разработка
Мобильный разработчик гайды и уроки
🇬🇧 Английский для программистов
🧠 Искусственный интеллект
ИИ и технологии
Neural - нейросети для работы и жизни
Книги ИИ
Artificial Intelligence
🔥 DevOPs
Devops для программистов
Книги Devops
🌟 Docker/Kubernets
Docker
Kubernets
📓 Книги
Библиотеки Книг для программситов
💼 Папка с вакансиями:
Папка Go разработчика:
Папка Python разработчика:
Папка Data Science
Папка Java разработчика
Папка C#
Папка Frontend
💥 Бесплатный Chatgpt бот
➡️ Делитесь с коллегами и сохраняйте себе, чтобы не потерять
⚡Машинное обучение
Machine Learning - запускаем лучшие ИИ модели, пишем код, погружаемся в нейросети
Ml Собеседование - подготовка к собесу по мл, алгоритмам, коду
Ml ru - актуальные статьи, новости, код и обучающие материалы
Ml Jobs - вакансии ML
ML Книги - актуальные бесплатные книги МО
ML чат
🏆 Golang
Golang
Golang собеседование - разбор задач и вопросов с собесов
Golang вакансии -работа для Go разработчика
Golang книги библиотека книг
Golang задачи и тесты
Golang чат
Golang news - новости из мира go
Golang дайджест
💥 Linux /Этичный хакинг
Linux Academy - гайды, секреты и лучшие материалы по Linux
Kali linux - погрузись в мир этичного хакинга и кибербезопасности
linux_kal - kali чат
Информационная безопасность
🚀 Data Science
Анализ данных - полезные фишки, код, гайды и советы, маст-хэв датасаентиста
Data Jobs - ds вакансии
Аналитик данных
Data Science книги - актуальные бесплатные книги
Big data
🛢Базы данных
Sql базы данных - научим работе с базами данных профессионально
Библиотека баз данных
SQL чат
Вакансии Sql аналитик данных
#️⃣C#
С# академия - лучший канал по c#
С# заметки — код, лучшие практики, заметки программиста c#
С# задачи и тесты
С# библиотека - актуальные бесплатные книги
C# вакансии - работа
🐍 Python
Python/django - самый крупный обучающий канал по Python
Python Собеседование - подготовка к собеседовению python и разбор алгоритмов
Pro python - статьи, новости, код и обучающие материалы
Python Jobs - вакансии Python
Python чат
Python книги
☕ Java
Java академия - java от Senior разработчика
Java вакансии
Java чат
Java вопросы с собеседований
Java книги
💻 C++
C++ академия
С++ книги
C++ задачи - подготовка к собеседовению мл, алгоритмам
C++ вакансии
⚡️ Frontend
Javascript академия - крупнейший js канал
React - лучшие гайды и советы по работе с react
Frontend - тутрориалы, уроки, гайды, код
PHP
Книги frontend
Задачи frontend
🦀 Rust
Rust программирование
Rust чат
Rust книги для программистов
📲 Мобильная разработка
Android разработка
Мобильный разработчик гайды и уроки
🇬🇧 Английский для программистов
🧠 Искусственный интеллект
ИИ и технологии
Neural - нейросети для работы и жизни
Книги ИИ
Artificial Intelligence
🔥 DevOPs
Devops для программистов
Книги Devops
🌟 Docker/Kubernets
Docker
Kubernets
📓 Книги
Библиотеки Книг для программситов
💼 Папка с вакансиями:
Папка Go разработчика:
Папка Python разработчика:
Папка Data Science
Папка Java разработчика
Папка C#
Папка Frontend
💥 Бесплатный Chatgpt бот
👍7❤4
Forwarded from Анализ данных (Data analysis)
Держите, полезная подборка ответов на распространенные вопросы из собеседований по Data Science и немного по ML
🔗 Вопросы/ответы
🔗 14 типичных вопросов с собеседования по ML
🔗 Большая подборка вопросов для собеседования по DS
🔗 Подготовка к собеседованию по ML: ответы на основные вопросы
🔗 Вопросы для собеседования на позицию ML-инженера
🔗 Вопросы с собеседований статистика
🔗 Вопросы по теории вероятности
🔗Материалы для подготовки к интервью по направлению
🔗Задачи с собеседований SQL
@data_analysis_ml
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥10❤7👍2