🔟 вещей, которые стоит знать, прежде чем лезть в AI-автоматизацию
Автор с Reddit построил больше 100 workflow и выделил самые главные уроки:
1. Начинайте с простых сценариев — лучше 10 минут пользы, чем 10 часов сложностей.
2. Записывайте процесс: скриншоты и ошибки — это ваше портфолио.
3. Сразу учитесь работать с HTTP-запросами — это открывает доступ почти ко всему.
4. Не называйте себя «экспертом», говорите конкретно: «Помогаю бизнесу экономить время».
5. Умейте отказываться: иногда «нет» открывает путь к более выгодным проектам.
6. Всегда думайте об ошибках: API падают, данные ломаются.
7. Делитесь провалами — они вызывают больше доверия, чем идеальные кейсы.
8. Стабильный доход приносит не настройка, а поддержка и улучшения.
9. Нетворкинг — половина успеха. Проекты приходят через коллег.
10. Автоматизируйте сначала себя: лучший аргумент — собственный пример.
💡 Главное: бизнесу нужны не красивые workflow, а результат — например, «минус 15 часов рутины в неделю».
🔗 Полный пост
@data_analysis_ml
Автор с Reddit построил больше 100 workflow и выделил самые главные уроки:
1. Начинайте с простых сценариев — лучше 10 минут пользы, чем 10 часов сложностей.
2. Записывайте процесс: скриншоты и ошибки — это ваше портфолио.
3. Сразу учитесь работать с HTTP-запросами — это открывает доступ почти ко всему.
4. Не называйте себя «экспертом», говорите конкретно: «Помогаю бизнесу экономить время».
5. Умейте отказываться: иногда «нет» открывает путь к более выгодным проектам.
6. Всегда думайте об ошибках: API падают, данные ломаются.
7. Делитесь провалами — они вызывают больше доверия, чем идеальные кейсы.
8. Стабильный доход приносит не настройка, а поддержка и улучшения.
9. Нетворкинг — половина успеха. Проекты приходят через коллег.
10. Автоматизируйте сначала себя: лучший аргумент — собственный пример.
💡 Главное: бизнесу нужны не красивые workflow, а результат — например, «минус 15 часов рутины в неделю».
🔗 Полный пост
@data_analysis_ml
❤18👍14🤣5🔥4
В MTC Web Services стартует серия практических вебинаров, где эксперты помогут разобраться с техническими этапами внедрения облачных сервисов с нуля.
На первом вебинаре 28 августа будем говорить об особенностях реализации и уникальных преимуществах нашего сервиса MWS VDI на базе VMcloud Platform.
Вебинар будет особенно полезен компаниям, которым сложно администрировать большой парк компьютеров и контролировать безопасность данных.
Что еще в программе?
Зарегистрироваться на онлайн-дискуссию
Please open Telegram to view this post
VIEW IN TELEGRAM
❤3
🗣️ *Локальный голосовой ИИ с LLM на 235B параметров — прямо на Mac*
Да, это реально: голосовой ассистент, полностью офлайн, с гигантской моделью на 235 миллиардов параметров. Всё работает локально на Mac M4.
📦 Стек:
—
—
—
—
🧠 Всё это запускается локально, без интернета. Максимальное потребление памяти — ~110 ГБ.
⏱️ Задержка «голос → голос» — примерно 950 мс, и её ещё можно уменьшить на ~100 мс.
💡 Для первых экспериментов — впечатляющий результат. Голосовой AI без облаков уже рядом.
🟢 Github
@data_analysis_ml
Да, это реально: голосовой ассистент, полностью офлайн, с гигантской моделью на 235 миллиардов параметров. Всё работает локально на Mac M4.
📦 Стек:
—
smart-turn v2
— управление диалогами —
MLX Whisper (large-v3-turbo-q4)
— распознавание речи —
Qwen3-235B-A22B-Instruct-2507-3bit-DWQ
— основная LLM —
Kokoro
— голосовой движок🧠 Всё это запускается локально, без интернета. Максимальное потребление памяти — ~110 ГБ.
⏱️ Задержка «голос → голос» — примерно 950 мс, и её ещё можно уменьшить на ~100 мс.
💡 Для первых экспериментов — впечатляющий результат. Голосовой AI без облаков уже рядом.
@data_analysis_ml
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥13👍10❤6
🚀 NVIDIA ускорила LLM в 53 раза 🤯
Представь: твой бюджет на инференс снижается на 98%, а точность остаётся на уровне лучших моделей.
📌 Как это работает:
Метод называется Post Neural Architecture Search (PostNAS) — революционный подход к «апгрейду» уже обученных моделей.
Freeze the Knowledge — берём мощную модель (например, Qwen2.5) и «замораживаем» её MLP-слои, сохраняя интеллект.
Surgical Replacement — заменяем большую часть медленных O(n²) attention-слоёв на новый супер-эффективный дизайн JetBlock с линейным вниманием.
Hybrid Power — оставляем несколько full-attention слоёв в критичных точках, чтобы не потерять способность к сложным рассуждениям.
⚡ Результат - Jet-Nemotron:
- 2 885 токенов/с ⚡
- 47× меньше KV-кеша (всего 154 MB)
- Топовая точность при космической скорости
🔑 Почему это важно:
Для бизнеса: 53× ускорение = 98% экономии на масштабном развёртывании. ROI проектов с ИИ меняется радикально.
Для инженеров: теперь SOTA-уровень доступен даже на устройствах с ограниченной памятью.
Для исследователей: вместо миллионов на пре-трейнинг — можно создавать новые эффективные модели через архитектурные модификации.
🟠 Github
🟠 Статья
@data_analysis_ml
Представь: твой бюджет на инференс снижается на 98%, а точность остаётся на уровне лучших моделей.
📌 Как это работает:
Метод называется Post Neural Architecture Search (PostNAS) — революционный подход к «апгрейду» уже обученных моделей.
Freeze the Knowledge — берём мощную модель (например, Qwen2.5) и «замораживаем» её MLP-слои, сохраняя интеллект.
Surgical Replacement — заменяем большую часть медленных O(n²) attention-слоёв на новый супер-эффективный дизайн JetBlock с линейным вниманием.
Hybrid Power — оставляем несколько full-attention слоёв в критичных точках, чтобы не потерять способность к сложным рассуждениям.
⚡ Результат - Jet-Nemotron:
- 2 885 токенов/с ⚡
- 47× меньше KV-кеша (всего 154 MB)
- Топовая точность при космической скорости
🔑 Почему это важно:
Для бизнеса: 53× ускорение = 98% экономии на масштабном развёртывании. ROI проектов с ИИ меняется радикально.
Для инженеров: теперь SOTA-уровень доступен даже на устройствах с ограниченной памятью.
Для исследователей: вместо миллионов на пре-трейнинг — можно создавать новые эффективные модели через архитектурные модификации.
@data_analysis_ml
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥24👍11❤8🤣1
🔋 Goldman Sachs выпустил 26-страничный отчёт об энергии и ИИ: **Powering the AI Era**
Главный вывод: дата-центры для ИИ потребляют электричество быстрее, чем энергетики успевают строить новые мощности.
Будущее индустрии будет зависеть не только от быстрых чипов, но и от того, кто сможет найти деньги и схемы финансирования для строительства.
🧵 Кратко по пунктам 👇
🚂 Каждый технологический бум имел опору
- XIX век — железные дороги
- 1990-е — оптоволоконные сети
- 2020-е — стойки с GPU
Одна «AI-фабрика» мощностью 250 МВт обойдётся примерно в $12 млрд.
📈 Почему обучение ИИ так прожорливо
- Кластеры состоят из тысяч GPU с жидкостным охлаждением.
- К 2027 году одна стойка будет потреблять в 50 раз больше энергии, чем облачная стойка 2022 года.
- Даже с оптимизациями мировой спрос на энергию дата-центров вырастет на 160% к 2030 году.
⚡ Энергосети не справляются
- Средний возраст ЛЭП в США — 40 лет.
- Разрешение на газовую станцию занимает до 7 лет.
- Goldman оценивает распределение новых источников:
- 30% комбинированные газовые станции
- 30% газовые «пикеры»
- 27,5% солнечная энергетика
- 12,5% другие источники
🔌 Как выкручиваются операторы
- Строят дата-центры прямо рядом с генераторами.
- Используют микросети, чтобы сглаживать пики нагрузки.
- Это ускоряет запуск, но создаёт конфликты с соседями — круглосуточно шумят дизельные или газовые турбины.
🟠 Подробнее
Главный вывод: дата-центры для ИИ потребляют электричество быстрее, чем энергетики успевают строить новые мощности.
Будущее индустрии будет зависеть не только от быстрых чипов, но и от того, кто сможет найти деньги и схемы финансирования для строительства.
🧵 Кратко по пунктам 👇
🚂 Каждый технологический бум имел опору
- XIX век — железные дороги
- 1990-е — оптоволоконные сети
- 2020-е — стойки с GPU
Одна «AI-фабрика» мощностью 250 МВт обойдётся примерно в $12 млрд.
📈 Почему обучение ИИ так прожорливо
- Кластеры состоят из тысяч GPU с жидкостным охлаждением.
- К 2027 году одна стойка будет потреблять в 50 раз больше энергии, чем облачная стойка 2022 года.
- Даже с оптимизациями мировой спрос на энергию дата-центров вырастет на 160% к 2030 году.
⚡ Энергосети не справляются
- Средний возраст ЛЭП в США — 40 лет.
- Разрешение на газовую станцию занимает до 7 лет.
- Goldman оценивает распределение новых источников:
- 30% комбинированные газовые станции
- 30% газовые «пикеры»
- 27,5% солнечная энергетика
- 12,5% другие источники
🔌 Как выкручиваются операторы
- Строят дата-центры прямо рядом с генераторами.
- Используют микросети, чтобы сглаживать пики нагрузки.
- Это ускоряет запуск, но создаёт конфликты с соседями — круглосуточно шумят дизельные или газовые турбины.
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
❤6🔥3👍2🤔1
Стань AI-инженером мирового уровня и зарабатывай до 1 млн. ₽
Уже сейчас работодатели активно ищут таких специалистов, и спрос на них будет только расти!
Магистратура «ИИ и компьютерное зрение» в ИТ-университете НЕЙМАРК — это:
1) онлайн обучение на английском языке
2) 2 диплома: НИУ ВШЭ + НЕЙМАРК
3) реальные задачи от Intel, Huawei, SBERLAB и других
4) возможность запустить стартап при поддержке наставников во время обучения
5) отсрочка от армии
Узнай, как поступить и учиться бесплатно — переходи в бот и забирай инструкцию!
Реклама. НЕЙМАРК, УНИВЕРСИТЕТ НЕЙМАРК. ИНН 5256209106.
Уже сейчас работодатели активно ищут таких специалистов, и спрос на них будет только расти!
Магистратура «ИИ и компьютерное зрение» в ИТ-университете НЕЙМАРК — это:
1) онлайн обучение на английском языке
2) 2 диплома: НИУ ВШЭ + НЕЙМАРК
3) реальные задачи от Intel, Huawei, SBERLAB и других
4) возможность запустить стартап при поддержке наставников во время обучения
5) отсрочка от армии
Узнай, как поступить и учиться бесплатно — переходи в бот и забирай инструкцию!
Реклама. НЕЙМАРК, УНИВЕРСИТЕТ НЕЙМАРК. ИНН 5256209106.
😁6❤4