🚀 Fine-tuning LLM с помощью RL — это несложно!
Вот минимальная реализация GRPO/PPO для Qwen3 на JAX — всего ~400 строк кода от начала до конца.
Что внутри:
- GRPO (Gradient-Regularized PPO) и PPO, реализованные с нуля
- Поддержка Qwen3, open LLM от Alibaba
- JAX-first подход: чистый, модульный и легко читаемый код
- Простая архитектура для быстрого ресёрча и экспериментов
Особенности:
- Без лишней магии и абстракций — всё прозрачно
- Минимум зависимостей
- Отличный старт для тех, кто хочет разобраться в LLM+RLHF
Подходит для:
- Исследователей, изучающих RL на языковых моделях
- Разработчиков, которые хотят понять PPO руками
- Всех, кто хочет обучать LLM «по-честному»
🧠 Хочешь разобраться в fine-tuning LLM через RLHF — начни с этого простого и понятного репозитория!
📦 Репозиторий: https://github.com/kvfrans/lmpo
Вот минимальная реализация GRPO/PPO для Qwen3 на JAX — всего ~400 строк кода от начала до конца.
Что внутри:
- GRPO (Gradient-Regularized PPO) и PPO, реализованные с нуля
- Поддержка Qwen3, open LLM от Alibaba
- JAX-first подход: чистый, модульный и легко читаемый код
- Простая архитектура для быстрого ресёрча и экспериментов
Особенности:
- Без лишней магии и абстракций — всё прозрачно
- Минимум зависимостей
- Отличный старт для тех, кто хочет разобраться в LLM+RLHF
Подходит для:
- Исследователей, изучающих RL на языковых моделях
- Разработчиков, которые хотят понять PPO руками
- Всех, кто хочет обучать LLM «по-честному»
🧠 Хочешь разобраться в fine-tuning LLM через RLHF — начни с этого простого и понятного репозитория!
📦 Репозиторий: https://github.com/kvfrans/lmpo
👍7❤6🔥4
🛠Вышла новая модель от Mistral — Devstral‑Small‑2507
Это обновлённая версия модели для работы с кодом.
Поддерживает 128k токенов, работает локально и показывает рекордные результаты среди открытых моделей.
Что нового:
• 53.6% на SWE‑Bench Verified
• Поддержка function calling, XML и промтов для код‑агентов
• Запускается на 1×RTX 4090 или Mac с 32 GB ОЗУ
• Apache 2.0
• Доступна через Ollama, LM Studio, Hugging Face, vLLM
Тарифы API:
$0.1 за миллион входных токенов
$0.3 за миллион выходных
Подходит для:
— Автоматизации правок и генерации тестов
— Интеграции в IDE и агенты
— Анализа больших проектов
🔗 Модель: https://huggingface.co/mistralai/Devstral-Small-2507
Это обновлённая версия модели для работы с кодом.
Поддерживает 128k токенов, работает локально и показывает рекордные результаты среди открытых моделей.
Что нового:
• 53.6% на SWE‑Bench Verified
• Поддержка function calling, XML и промтов для код‑агентов
• Запускается на 1×RTX 4090 или Mac с 32 GB ОЗУ
• Apache 2.0
• Доступна через Ollama, LM Studio, Hugging Face, vLLM
Тарифы API:
$0.1 за миллион входных токенов
$0.3 за миллион выходных
Подходит для:
— Автоматизации правок и генерации тестов
— Интеграции в IDE и агенты
— Анализа больших проектов
🔗 Модель: https://huggingface.co/mistralai/Devstral-Small-2507
🔥10❤5👍5
🦉 Как CAMEL-AI автоматизировали построение графиков с помощью Gemini 2.5 Pro
Команда CAMEL-AI показала, как связала свою систему агентов OWL с моделью Gemini 2.5 Pro, чтобы всё делалось само: от поиска данных до готового графика.
Что делает агент:
1. Ищет нужную информацию (например, бенчмарки ИИ-моделей)
2. Кратко объясняет, что в ней важного
3. Пишет Python-код для графика
4. Строит график и сохраняет и код, и изображение
💡 Всё это происходит по простому текстовому запросу — прямо в браузере через готовый интерфейс.
Почему это круто:
— Не нужно писать код самому
— Система сама выбирает нужные шаги
— Всё работает в одном окне: и модель, и инструменты, и визуализация
— Можно подключать любые API и расширять под себя
📌 Подробнее
@data_analysis_ml
Команда CAMEL-AI показала, как связала свою систему агентов OWL с моделью Gemini 2.5 Pro, чтобы всё делалось само: от поиска данных до готового графика.
Что делает агент:
1. Ищет нужную информацию (например, бенчмарки ИИ-моделей)
2. Кратко объясняет, что в ней важного
3. Пишет Python-код для графика
4. Строит график и сохраняет и код, и изображение
💡 Всё это происходит по простому текстовому запросу — прямо в браузере через готовый интерфейс.
Почему это круто:
— Не нужно писать код самому
— Система сама выбирает нужные шаги
— Всё работает в одном окне: и модель, и инструменты, и визуализация
— Можно подключать любые API и расширять под себя
📌 Подробнее
@data_analysis_ml
❤10👍5🔥3
This media is not supported in your browser
VIEW IN TELEGRAM
🎮 Инженеры X (команда Илона Маска) сделали рабочую игру 3D-FPS за 4 часа с помощью Grok 4
Разработчик из xAI, Дэнни Лимансета, собрал шутер от первого лица всего за 4 часа, используя Grok 4 — LLM от команды Илона. Модель помогла с кодом, импортом ассетов, базовой логикой и генерацией окружения.
🛠 Что внутри:
— 3D-персонаж и базовое перемещение
— Импорт моделей и текстур из сети
— Логика стрельбы, здоровье, базовый UI
— Всё собрано в одном пайплайне с помощью Grok 4
💬 Реакция комьюнити на Reddit:
> “Это неплохо для 4 часов, но опытный геймдев сделал бы не хуже без ИИ.”
> “Я такое соберу вручную за пару часов с ассетами.”
🔗 Пост
@data_analysis_ml
Разработчик из xAI, Дэнни Лимансета, собрал шутер от первого лица всего за 4 часа, используя Grok 4 — LLM от команды Илона. Модель помогла с кодом, импортом ассетов, базовой логикой и генерацией окружения.
🛠 Что внутри:
— 3D-персонаж и базовое перемещение
— Импорт моделей и текстур из сети
— Логика стрельбы, здоровье, базовый UI
— Всё собрано в одном пайплайне с помощью Grok 4
💬 Реакция комьюнити на Reddit:
> “Это неплохо для 4 часов, но опытный геймдев сделал бы не хуже без ИИ.”
> “Я такое соберу вручную за пару часов с ассетами.”
🔗 Пост
@data_analysis_ml
🔥16❤7👍4🤔4😢1
This media is not supported in your browser
VIEW IN TELEGRAM
🎓 Machine Learning Visualized — лучший способ понять, как работает ML *на самом деле*
Обычно машинное обучение учат по формулам или просто вызывают
🔍 Что это:
Открытый Jupyter Book с интерактивными ноутбуками, в которых:
- Алгоритмы реализованы «с нуля» на NumPy
- Каждый шаг визуализирован: потери, веса, градиенты, границы решений
- Можно изменять параметры и наблюдать, как это влияет на обучение
📘 Темы:
- Градиентный спуск
- Логистическая регрессия
- Перцептрон
- K‑Means и PCA
- Обратное распространение в нейросетях
🧠 Полезно:
- Если ты изучаешь машинное обучение и хочешь понять, что происходит внутри моделей
- Если преподаёшь ML и ищешь понятные наглядные материалы
- Если хочешь объяснить ML-процессы коллегам без магии
🚀 Запуск:
Или просто заходи на сайт:
🔗 https://ml-visualized.com/
📦 Open Source, MIT
⭐️ 460+ звёзд, можно вносить вклад, добавлять новые алгоритмы и улучшать визуализации.
👉 Репозиторий: https://github.com/gavinkhung/machine-learning-visualized
▶️ Учимся здесь
Обычно машинное обучение учат по формулам или просто вызывают
fit()
. Но если ты хочешь увидеть, как алгоритмы учатся шаг за шагом, — этот проект создан для тебя.🔍 Что это:
Открытый Jupyter Book с интерактивными ноутбуками, в которых:
- Алгоритмы реализованы «с нуля» на NumPy
- Каждый шаг визуализирован: потери, веса, градиенты, границы решений
- Можно изменять параметры и наблюдать, как это влияет на обучение
📘 Темы:
- Градиентный спуск
- Логистическая регрессия
- Перцептрон
- K‑Means и PCA
- Обратное распространение в нейросетях
🧠 Полезно:
- Если ты изучаешь машинное обучение и хочешь понять, что происходит внутри моделей
- Если преподаёшь ML и ищешь понятные наглядные материалы
- Если хочешь объяснить ML-процессы коллегам без магии
🚀 Запуск:
git clone https://github.com/gavinkhung/machine-learning-visualized
cd machine-learning-visualized
./download_notebooks.sh
jupyter-book build .
Или просто заходи на сайт:
🔗 https://ml-visualized.com/
📦 Open Source, MIT
⭐️ 460+ звёзд, можно вносить вклад, добавлять новые алгоритмы и улучшать визуализации.
👉 Репозиторий: https://github.com/gavinkhung/machine-learning-visualized
Please open Telegram to view this post
VIEW IN TELEGRAM
❤17🔥12👍5👏2
🔥 Meta строит ИИ-монстра: кластер Prometheus уже потребляет 1 ГВт
По данным SemiAnalysis, Meta заливает $30 млрд в перезапуск суперИИ — новые дата-кластеры, миллионы GPU и зарплаты уровня "заберите всех ресерчеров".
📍 В Огайо Meta строит один из крупнейших кластеров для обучения ИИ в мире — Prometheus (1 ГВт потребления).
📍 В Луизиане — Hyperion, цель к 2027 году: 2 ГВт. Всё на базе NVIDIA и собственных газовых турбин. Без дизеля — умная система охлаждения + временные тентовые ЦОДы, которые ставятся за месяцы.
🚫 Что пошло не так в прошлой попытке Llama‑гиганта:
- плохая реализация chunked attention
- сбои в expert choice routing
- низкое качество данных
- плохая координация масштабирования
Теперь Meta берёт в расчёт всё: вычисления, инфраструктуру, данные и кадры. Ставка — на абсолютное лидерство в суперИИ.
Война моделей — это уже не про параметры, а про ГигаВатты.
*Meta признана экстремистской и запрещена в России.
📌 Подробнее
@data_analysis_ml
По данным SemiAnalysis, Meta заливает $30 млрд в перезапуск суперИИ — новые дата-кластеры, миллионы GPU и зарплаты уровня "заберите всех ресерчеров".
📍 В Огайо Meta строит один из крупнейших кластеров для обучения ИИ в мире — Prometheus (1 ГВт потребления).
📍 В Луизиане — Hyperion, цель к 2027 году: 2 ГВт. Всё на базе NVIDIA и собственных газовых турбин. Без дизеля — умная система охлаждения + временные тентовые ЦОДы, которые ставятся за месяцы.
🚫 Что пошло не так в прошлой попытке Llama‑гиганта:
- плохая реализация chunked attention
- сбои в expert choice routing
- низкое качество данных
- плохая координация масштабирования
Теперь Meta берёт в расчёт всё: вычисления, инфраструктуру, данные и кадры. Ставка — на абсолютное лидерство в суперИИ.
Война моделей — это уже не про параметры, а про ГигаВатты.
*Meta признана экстремистской и запрещена в России.
📌 Подробнее
@data_analysis_ml
❤15🔥7👍5
🧠 Как оживить open-source LLM без дообучения?
Большинство открытых языковых моделей "замерзают" во времени: они не умеют гуглить, не могут обновляться и, как следствие, проваливаются на свежих научных задачах.
📄 Новый подход — X‑Master
Он превращает любую LLM в агента с доступом к коду, вебу и самокритике, не изменяя веса модели.
💡 Как это работает:
– Модель может вставить Python-код прямо в ответ
– Код выполняется в песочнице, результат возвращается в чат
– Это позволяет модели использовать «внешнюю память»: веб-скрапинг, вычисления, даже вызов инструментов
Чтобы избежать случайных ошибок, авторы запускают 5 Solver-клонов, а затем роли Critic → Rewriter → Selector доводят ответ до ума.
Этот «поиск → чистка» напоминает reinforcement rollouts, но не требует переобучения.
📈 Результат:
– DeepSeek-R1 на задаче «Humanity’s Last Exam»: с 17.7% до 32.1%
– Обходит закрытые модели на сложном биотесте на +5 пунктов
💥 И всё это — без дообучения. Просто обёртка.
Промпты, sandbox, и немного здравого смысла — и ваша модель снова в игре.
arxiv.org/abs/2507.05241
@data_analysis_ml
Большинство открытых языковых моделей "замерзают" во времени: они не умеют гуглить, не могут обновляться и, как следствие, проваливаются на свежих научных задачах.
📄 Новый подход — X‑Master
Он превращает любую LLM в агента с доступом к коду, вебу и самокритике, не изменяя веса модели.
💡 Как это работает:
– Модель может вставить Python-код прямо в ответ
– Код выполняется в песочнице, результат возвращается в чат
– Это позволяет модели использовать «внешнюю память»: веб-скрапинг, вычисления, даже вызов инструментов
Чтобы избежать случайных ошибок, авторы запускают 5 Solver-клонов, а затем роли Critic → Rewriter → Selector доводят ответ до ума.
Этот «поиск → чистка» напоминает reinforcement rollouts, но не требует переобучения.
📈 Результат:
– DeepSeek-R1 на задаче «Humanity’s Last Exam»: с 17.7% до 32.1%
– Обходит закрытые модели на сложном биотесте на +5 пунктов
💥 И всё это — без дообучения. Просто обёртка.
Промпты, sandbox, и немного здравого смысла — и ваша модель снова в игре.
arxiv.org/abs/2507.05241
@data_analysis_ml
❤16👍9🔥6
⚡️ Учёные нашли способ сделать электронику в 1000 раз быстрее
Американские исследователи сделали прорыв в управлении квантовыми материалами. Они научились переключать 1T-TaS₂ — особый кристалл — между состояниями изолятора и проводника при обычных температурах и на стабильное время.
▪ Ключ к переключению — метод thermal quenching
▪ Материал реагирует на свет, изменяя свои электронные свойства
▪ Работает как транзистор, но в разы быстрее и без кремния
▪ Главное: переключение обратимое и мгновенное
💡 Почему это важно:
Такие материалы способны заменить традиционные транзисторы, которые уже упёрлись в физические ограничения кремния. Это открывает путь к:
- сверхбыстрым процессорам
- минимальным размерам чипов
- новой архитектуре вычислений
Если технология масштабируется — это будет шаг к новой квантовой электронике, где компьютеры станут быстрее не на 20%, а в сотни раз.
Источник: https://sciencealert.com/quantum-breakthrough-could-make-your-devices-1000-times-faster
@data_analysis_ml
Американские исследователи сделали прорыв в управлении квантовыми материалами. Они научились переключать 1T-TaS₂ — особый кристалл — между состояниями изолятора и проводника при обычных температурах и на стабильное время.
▪ Ключ к переключению — метод thermal quenching
▪ Материал реагирует на свет, изменяя свои электронные свойства
▪ Работает как транзистор, но в разы быстрее и без кремния
▪ Главное: переключение обратимое и мгновенное
💡 Почему это важно:
Такие материалы способны заменить традиционные транзисторы, которые уже упёрлись в физические ограничения кремния. Это открывает путь к:
- сверхбыстрым процессорам
- минимальным размерам чипов
- новой архитектуре вычислений
Если технология масштабируется — это будет шаг к новой квантовой электронике, где компьютеры станут быстрее не на 20%, а в сотни раз.
Источник: https://sciencealert.com/quantum-breakthrough-could-make-your-devices-1000-times-faster
@data_analysis_ml
👍19🔥10❤7🤯3
🎥 Making Flux Run Fast — оптимизация инференса PyTorch моделей
Как ускорить генерацию изображений с текстом до менее чем полсекунды? Joel Schlosser из PyTorch Core показывает, как это сделать с помощью:
-
-
-
Эти техники не только улучшают Flux, но универсальны и легко применимы к любым трансформерным моделям.
📺 Видео — часть серии PyTorch Compiler Series, где команда делится советами, лайфхаками и внутренностями оптимизирующего стека PyTorch.
🔗 Смотреть: https://www.youtube.com/watch?v=VNYBgqGQ98E
Как ускорить генерацию изображений с текстом до менее чем полсекунды? Joel Schlosser из PyTorch Core показывает, как это сделать с помощью:
-
torch.compile
— ускорение инференса без изменения модели -
torch.export
— подготовка модели к компиляции и интеграции -
torchao
— библиотека для квантования, критично важная для скоростиЭти техники не только улучшают Flux, но универсальны и легко применимы к любым трансформерным моделям.
📺 Видео — часть серии PyTorch Compiler Series, где команда делится советами, лайфхаками и внутренностями оптимизирующего стека PyTorch.
🔗 Смотреть: https://www.youtube.com/watch?v=VNYBgqGQ98E
YouTube
Making Flux Run Fast: PyTorch Compiler Series
Making Flux Run Fast
This video showcases a series of PyTorch optimizations that bring Flux text-to-image generation inference time to under half a second. torch.compile / torch.export and quantization through the torchao library are crucial players to achieving…
This video showcases a series of PyTorch optimizations that bring Flux text-to-image generation inference time to under half a second. torch.compile / torch.export and quantization through the torchao library are crucial players to achieving…
❤8👍3🔥1🤯1😱1🎉1
🎓 Фанфакт у статьи Google’s Gemini 2.5 arXiv:2507.06261 — 3295 авторов!
https://arxiv.org/abs/2507.06261
https://arxiv.org/abs/2507.06261
❤14🔥5👍4
🍏 Apple всерьёз задумалась о покупке Mistral — Bloomberg / Марк Гурман
По информации Bloomberg, Apple серьёзно рассматривает покупку французского стартапа Mistral AI, чтобы наконец войти в ИИ-гонку.
Это очень поздний шаг — но он показывает, насколько сильно Apple отстала от OpenAI, Google и даже xAI.
Пока другие выкатывают публичные LLM, мультимодальные ассистенты и интеграции в поиске, Apple остаётся в роли наблюдателя.
📌 Почему это важно:
- Mistral — один из главных open-source игроков на рынке ИИ (выпускают мощные LLM и Mixture of Experts-модели)
- У Apple пока нет ни собственной модели, ни сильной стратегии в области ИИ
- Приобретение Mistral может стать экстренной попыткой догнать конкурентов
Если сделка состоится — это будет крупнейший AI-манёвр Apple за всё время.
#Apple #Mistral #AI #LLM #ГонкаИИ
@data_analysis_ml
По информации Bloomberg, Apple серьёзно рассматривает покупку французского стартапа Mistral AI, чтобы наконец войти в ИИ-гонку.
Это очень поздний шаг — но он показывает, насколько сильно Apple отстала от OpenAI, Google и даже xAI.
Пока другие выкатывают публичные LLM, мультимодальные ассистенты и интеграции в поиске, Apple остаётся в роли наблюдателя.
📌 Почему это важно:
- Mistral — один из главных open-source игроков на рынке ИИ (выпускают мощные LLM и Mixture of Experts-модели)
- У Apple пока нет ни собственной модели, ни сильной стратегии в области ИИ
- Приобретение Mistral может стать экстренной попыткой догнать конкурентов
Если сделка состоится — это будет крупнейший AI-манёвр Apple за всё время.
#Apple #Mistral #AI #LLM #ГонкаИИ
@data_analysis_ml
👍13❤6🔥4🤔4
🧠 MindsDB — универсальный MCP-сервер с поддержкой SQL и ИИ
Если вам нужен мощный способ подключать LLM к реальным данным — вот он.
MindsDB — это инструмент, который позволяет обращаться к более чем 200 источникам данных (Slack, Gmail, Google Sheets, базы данных, соцсети и т.д.) с помощью:
▪ обычных SQL-запросов
▪ или просто на естественном языке (например: "покажи все письма от клиента за прошлый месяц")
Что делает его особенным?
▪ Умеет объединять данные из разных систем — как единый запрос
▪ Позволяет вызывать и обучать ML/LLM‑модели прямо из SQL
▪ Работает как MCP‑сервер — можно подключать агентов, чат-ботов и использовать в продуктивной среде
▪ Полностью open-source, с активным сообществом и 33 000+ звёзд на GitHub
💡 Это готовое решение, чтобы построить:
– интеллектуального ассистента с доступом к данным
– LLM-интерфейс к корпоративным системам
– гибкий слой интеграции для агентов
🔗 github.com/mindsdb/mindsdb
@data_analysis_ml
Если вам нужен мощный способ подключать LLM к реальным данным — вот он.
MindsDB — это инструмент, который позволяет обращаться к более чем 200 источникам данных (Slack, Gmail, Google Sheets, базы данных, соцсети и т.д.) с помощью:
▪ обычных SQL-запросов
▪ или просто на естественном языке (например: "покажи все письма от клиента за прошлый месяц")
Что делает его особенным?
▪ Умеет объединять данные из разных систем — как единый запрос
▪ Позволяет вызывать и обучать ML/LLM‑модели прямо из SQL
▪ Работает как MCP‑сервер — можно подключать агентов, чат-ботов и использовать в продуктивной среде
▪ Полностью open-source, с активным сообществом и 33 000+ звёзд на GitHub
💡 Это готовое решение, чтобы построить:
– интеллектуального ассистента с доступом к данным
– LLM-интерфейс к корпоративным системам
– гибкий слой интеграции для агентов
🔗 github.com/mindsdb/mindsdb
@data_analysis_ml
❤14👍7🔥4
🧠 NeuralOS — симуляция операционной системы с помощью нейросети
Новое исследование *NeuralOS: Towards Simulating Operating Systems via Neural Generative Models* показывает, как можно эмулировать поведение GUI операционки с помощью нейросетей — прямо как игру, но из нейронки.
Что сделали авторы:
▪ Соединили RNN (отвечает за отслеживание состояния ОС)
▪ с диффузионным рендерером, который генерирует экран кадр за кадром
▪ На вход идут реальные события: движение мыши, клики, нажатия клавиш
▪ На выходе — визуально достоверный интерфейс, который реагирует на действия
🧪 Обучение:
Модель обучалась на огромном датасете сессий Ubuntu XFCE — с действиями как от рандомных, так и от AI-агентов.
📈 Что получилось:
— правдоподобное поведение UI
— корректное отображение кликов, перемещений
— распознавание переходов состояний: запуск приложений, переключение окон
— пока есть трудности с детальной клавиатурой (например, ввод текста), но базовая навигация работает
💡 Почему это важно:
NeuralOS — это шаг в сторону генеративного интерфейса, где весь UI может быть создан и управляем не кодом, а нейросетью, способной понимать, прогнозировать и адаптироваться к действиям пользователя.
📄 https://huggingface.co/papers/2507.08800
@data_analysis_ml
Новое исследование *NeuralOS: Towards Simulating Operating Systems via Neural Generative Models* показывает, как можно эмулировать поведение GUI операционки с помощью нейросетей — прямо как игру, но из нейронки.
Что сделали авторы:
▪ Соединили RNN (отвечает за отслеживание состояния ОС)
▪ с диффузионным рендерером, который генерирует экран кадр за кадром
▪ На вход идут реальные события: движение мыши, клики, нажатия клавиш
▪ На выходе — визуально достоверный интерфейс, который реагирует на действия
🧪 Обучение:
Модель обучалась на огромном датасете сессий Ubuntu XFCE — с действиями как от рандомных, так и от AI-агентов.
📈 Что получилось:
— правдоподобное поведение UI
— корректное отображение кликов, перемещений
— распознавание переходов состояний: запуск приложений, переключение окон
— пока есть трудности с детальной клавиатурой (например, ввод текста), но базовая навигация работает
💡 Почему это важно:
NeuralOS — это шаг в сторону генеративного интерфейса, где весь UI может быть создан и управляем не кодом, а нейросетью, способной понимать, прогнозировать и адаптироваться к действиям пользователя.
📄 https://huggingface.co/papers/2507.08800
@data_analysis_ml
❤8🔥6👍4🤣1
🤖 Илон Маск: ИИ станет умнее любого человека — меньше чем за 2 года,
а умнее всего человечества вместе — меньше чем за 5 лет
По мнению Маска, у ИИ нет потолка — рост идёт экспоненциально, и конца этому тренду не видно.
Он прямо говорит: через несколько лет модели смогут выполнять работу целых корпораций, действуя как единая система.
📌 Почему это звучит серьёзно?
Потому что Dario Amodei, CEO Anthropic, говорит буквально то же самое — с теми же сроками.
Он ожидает, что к 2027 году появится суперинтеллект, способный управлять крупными компаниями как цифровой "мозг-конгломерат".
🔥 Если они правы — нас ждёт резкий сдвиг:
– ИИ перестаёт быть инструментом и становится экономическим субъектом
– Компании превращаются в оболочки для моделей
– Решения, стратегии, оптимизация — передаются системам ИИ
– Конкуренция меняется: человек против облачного суперинтеллекта с API
Мы приближаемся не просто к новой технологии —
а к новой форме разума, способной оперировать как корпорация, но быстрее, точнее и дешевле.
#AI #ElonMusk #Superintelligence #DarioAmodei #Anthropic #FutureOfWork #AGI
@data_analysis_ml
а умнее всего человечества вместе — меньше чем за 5 лет
По мнению Маска, у ИИ нет потолка — рост идёт экспоненциально, и конца этому тренду не видно.
Он прямо говорит: через несколько лет модели смогут выполнять работу целых корпораций, действуя как единая система.
📌 Почему это звучит серьёзно?
Потому что Dario Amodei, CEO Anthropic, говорит буквально то же самое — с теми же сроками.
Он ожидает, что к 2027 году появится суперинтеллект, способный управлять крупными компаниями как цифровой "мозг-конгломерат".
🔥 Если они правы — нас ждёт резкий сдвиг:
– ИИ перестаёт быть инструментом и становится экономическим субъектом
– Компании превращаются в оболочки для моделей
– Решения, стратегии, оптимизация — передаются системам ИИ
– Конкуренция меняется: человек против облачного суперинтеллекта с API
Мы приближаемся не просто к новой технологии —
а к новой форме разума, способной оперировать как корпорация, но быстрее, точнее и дешевле.
#AI #ElonMusk #Superintelligence #DarioAmodei #Anthropic #FutureOfWork #AGI
@data_analysis_ml
🤣25❤9👍8🤔5🔥4
Новость для тех, кто планирует поступление в магистратуру в этом году — МТС открывает набор на программу по искусственному интеллекту на ФКН ВШЭ
Самое важное:
– 30 оплачиваемых мест от МТС;
– Обучение проходит в очном формате в московском кампусе ВШЭ;
– Занятия ведут преподаватели ВШЭ и действующие эксперты-практики из МТС и MTS AI, а для проектов можно использовать виртуальную инфраструктуру компании;
– После и во время обучения можно получить оффер;
– В канале абитуриентов делимся новостями и помогаем с подготовкой к поступлению
В программе передовые методы машинного и глубинного обучения: большие языковые модели, генеративные нейросети, инструменты компьютерного зрения и распознавания естественного языка.
Подробная информация о программе и документах на сайте. Ждем тебя🥚
Самое важное:
– 30 оплачиваемых мест от МТС;
– Обучение проходит в очном формате в московском кампусе ВШЭ;
– Занятия ведут преподаватели ВШЭ и действующие эксперты-практики из МТС и MTS AI, а для проектов можно использовать виртуальную инфраструктуру компании;
– После и во время обучения можно получить оффер;
– В канале абитуриентов делимся новостями и помогаем с подготовкой к поступлению
В программе передовые методы машинного и глубинного обучения: большие языковые модели, генеративные нейросети, инструменты компьютерного зрения и распознавания естественного языка.
Подробная информация о программе и документах на сайте. Ждем тебя
Please open Telegram to view this post
VIEW IN TELEGRAM
❤4
🧠 MetaStone‑S1 — первая открытая Reflective Generative Model, сопоставимая с OpenAI o3
Новая модель MetaStone‑S1 от MetaStone-AI представляет собой рефлексивную генеративную архитектуру, ориентированную на эффективное масштабирование при инференсе (TTS).
🔍 Ключевые особенности:
▪ SPRM (Self-supervised Process Reward Model)
Позволяет модели самостоятельно оценивать качество промежуточных шагов рассуждения — без ручной разметки процесса. Это объединяет policy‑модель и reward‑модель в одном бэкенде, экономя 99% параметров PRM.
▪ Три режима рассуждения (TTS Modes)
Выбирайте уровень усилия: low / medium / high — для контроля глубины reasoning на инференсе.
▪ Масштабируемость и производительность
MetaStone‑S1 (32B параметров) показывает результаты на уровне OpenAI o3-mini, при этом оставаясь полностью открытой.
📐 Scaling Law
Авторы выявили эмпирическую закономерность между вычислительной нагрузкой и качеством reasoning — и нашли "aha-момент", где резкий рост качества наступает при определённой глубине мышления.
📊 Бенчмарки:
Модель достигает SOTA-результатов на:
- AIME24 / AIME25
- LiveCodeBench
- C-EVAL и др.
💡 Если вы работаете над LLM-агентами, интерпретируемыми системами или reasoning-моделями — MetaStone‑S1 обязательно к изучению. Это новая парадигма в генеративных ИИ: мышление + самооценка = устойчивое, масштабируемое поведение.
https://huggingface.co/papers/2507.01951
Новая модель MetaStone‑S1 от MetaStone-AI представляет собой рефлексивную генеративную архитектуру, ориентированную на эффективное масштабирование при инференсе (TTS).
🔍 Ключевые особенности:
▪ SPRM (Self-supervised Process Reward Model)
Позволяет модели самостоятельно оценивать качество промежуточных шагов рассуждения — без ручной разметки процесса. Это объединяет policy‑модель и reward‑модель в одном бэкенде, экономя 99% параметров PRM.
▪ Три режима рассуждения (TTS Modes)
Выбирайте уровень усилия: low / medium / high — для контроля глубины reasoning на инференсе.
▪ Масштабируемость и производительность
MetaStone‑S1 (32B параметров) показывает результаты на уровне OpenAI o3-mini, при этом оставаясь полностью открытой.
📐 Scaling Law
Авторы выявили эмпирическую закономерность между вычислительной нагрузкой и качеством reasoning — и нашли "aha-момент", где резкий рост качества наступает при определённой глубине мышления.
📊 Бенчмарки:
Модель достигает SOTA-результатов на:
- AIME24 / AIME25
- LiveCodeBench
- C-EVAL и др.
💡 Если вы работаете над LLM-агентами, интерпретируемыми системами или reasoning-моделями — MetaStone‑S1 обязательно к изучению. Это новая парадигма в генеративных ИИ: мышление + самооценка = устойчивое, масштабируемое поведение.
https://huggingface.co/papers/2507.01951
👍9❤4🔥2