Анализ данных (Data analysis)
46.3K subscribers
2.31K photos
264 videos
1 file
2.04K links
Data science, наука о данных.

@haarrp - админ

@itchannels_telegram - 🔥 главное в ит

@ai_machinelearning_big_data - ML

@machinelearning_interview - вопросы с собесдований по Ml

РКН: clck.ru/3FmyAp
Download Telegram
🌟 Dive into Deep Learning — свободная книга от исследователей Amazon: Zhang, Li и других

Мощная книга, которая на 1108 страницах подробно описывает реализацию алгоритмов ML и Deep Learning с помощью PyTorch, NumPy/MXNet, JAX и TensorFlow.

По этой книге читаются лекции в 500 университетах 70 стран.

🟡 Dive into Deep Learning
🟡 PDF
🖥 GitHub с кодом к книге

@data_analysis_ml
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥23👍95❤‍🔥1
🌟 Lepton — библиотека Python для удобного создания AI-приложений

pip install -U leptonai

Особенности Lepton:
— Простые абстракции для запуска моделей, наподобие тех, что представлены на HuggingFace

— Готовые шаблоны для распространенных моделей, таких как Llama, SDXL, Whisper и других.

— Возможность для лёгкого разворачивания в облачной среде.

🖥 GitHub
🟡 Доки

@data_analysis_ml
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍106🔥4
🌟 Dolphin-2.9.3-Yi-1.5: квантизированные GGUF версии с 34B параметрами и контекстным окном 32k.

На Huffingface пользователь bartowski опубликовал несколько квантизированных версий с разной степенью сжатия,
Размерность моделей: от IQ2_XS (10.3 Gb) до Q8_0_L (37.4GB), рекомендуемая — Q6_K.

Семейство Dolfin основано на моделях Yi и распространяется по лицензии Аpache 2.0
Dolphin-2.9.3 обладает разнообразными навыками следования инструкциям, общения и программирования. Она также имеет начальные агентные способности и поддерживает вызов функций.
Модель не имеет цензуры. Создатели отфильтровали набор данных, чтобы удалить выравнивание и предвзятость. Dolphin обучался на данных, полученных из GPT4, среди других моделей.

🤗 Hugging Face

@data_analysis_ml

#LLM #ML #Huggingface
Please open Telegram to view this post
VIEW IN TELEGRAM
👍104🔥3
🌟 whylogs — библиотека Python для конвейеров обработки данных и для ML-приложений

pip install whylogs

whylogs позволяет эффективно собирать данные для:
— отслеживания любых изменений в наборе данных
— быстрой визуализации основных статистических параметров данных
— обнаружения дрейфа данных
— выявления проблем в процессе обучения, причин снижения производительности ML-модели

🖥 GitHub
🟡 Доки

@data_analysis_ml
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
8🔥6👍2
🌟 LongVA: VLM для больших видео на основе Qwen-2-7B

LongVA – техника визуальной обработки длинных видео, которая может обрабатывать более 1000 кадров и 200К визуальных токенов с помощью концепции Long Context Transfer.
Принцип Long Context Transfer состоит в изменении метода обучения: сначала обучают языковую модель только на данных "изображение-текст", а затем используют краткие данные изображений для согласования модальностей. Модель, обученная таким образом, может напрямую понимать мультикадровые видео, исключая необходимость в обучении на датасетах длинных видео.

В независимом тестировании на Video-MME, предложенном USTC, LongVA заняла седьмое место и достигла уровня SoTA для модели 7B.
В тестировании MLVU - второе место после GPT-4o и была признана самой мощной открытой моделью.

Для лабораторного тестирования метода был разработан специальный тест Visual Needle-In-A-Haystack (V-NIAH), состоящий из пяти вопросов с ответами на основе изображений.
Каждый из пяти изображений были вставлены в качестве отдельного кадра в тестовое многочасовое видео.
Проверка на тестовых пяти вопросах (с подсказкой по локализации в формулировке вопроса) показала, что LongVA проходит этот тест пределах 2000 кадров при плотности 144 токена на кадр.
Этот тест доступен в репозитории проекта наряду с инструкциями по запуску LongVA в локальных средах и инструментами для самостоятельной тонкой настройки (тренировки) модели.

👉 Весь набор предлагаемых инструментов репозитория прошел проверку на выполнение с CUDA 11.8 на 1хA100-SXM-80G


⚖️ Лицензирование кода: Apache-2.0 license

⚖️ Лицензирование моделей: Qwen2 license


🟡Страница проекта
🟡Demo
🟡Модели на HF
🟡Arxiv
🖥Github [Stars: 221 | Issues: 9 | Forks: 11]


@ai_machinelearning_big_data

#ML #VLM #VQA
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍72🔥2
🌟 Llama Recipes — набор готовых метод для файнтюнинга Llama3

pip install llama-recipes

Llama Recipes предоставляет набор методов для файнтюнинга Llama3 с использованием FSDP и PEFT для работы на одном/нескольких GPU.

🖥 GitHub

@data_analysis_ml
Please open Telegram to view this post
VIEW IN TELEGRAM
👍17🔥54
⚡️ Polyaxon — open-source MLOps-платформа

установка CLI:
pip install -U polyaxon


Polyaxon — это платформа для создания, обучения и мониторинга крупномасштабных ML-приложений, призванная решить проблемы воспроизводимости, автоматизации и масштабируемости.

Polyaxon можно развернуть в любом ЦОДе или облачном провайдере;
платформа поддерживает все необходимые фреймворки, такие как Tensorflow, MXNet, Caffe, Torch и т. д.

🖥 GitHub
🟡 Доки

@data_analysis_ml
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥8👍64
🌟 Kedro — набор готовых к продакшену инструментов для Data Science и ML

pip install kedro

Kedro — фреймворк, который добавляет модульность, удобную для работы с данными. С помощью Kedro можно создавать проекты по шаблону, настраивать пайплайн в YAML, делить его на части, документировать проект — и это далеко не всё.

Kedro позволяет сохранять и загружать данные в различные хранилища, такие как S3, GCP, Azure, sFTP, DBFS и локальные файловые системы. Поддерживаются такие форматы файлов, как Pandas, Spark, Dask, NetworkX, Pickle, Plotly, Matplotlib и многие другие.

🖥 GitHub
🟡 Доки

@data_analysis_ml
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍115🥰3🤣1
Forwarded from Machinelearning
⚡️ DeepSeek-V2-Chat-0628: обновленная версия Deepseek-V2

DeepSeek выложила в открытый доступ веса модели V2-Chat-0628. Это обновление флагманской Deepseek-V2, одной из лучших моделей в открытом доступе.
Согласно чартам LMSYS Chatbot Arena - эта модель №11 среди open-source моделей на сегодняшний день.

Детальные достижения:
🟢Hard Prompts 3-я позиция чарта;
🟢Coding 3-я позиция чарта;
🟢Longer Query 4-я позиция чарта;
🟢Math 7-я позиция чарта.

Основная особенность обновления - была оптимизирована возможность следования инструкциям в области "система", что значительно повышает удобство работы с иммерсивным переводом, RAG и другими задачами.
Одновременно с обновлением в репозитории на Huggingface, модель доступна по API в сервисе https://platform.deepseek.com.

💵 Стоимость API DeepSeek-V2-Chat-0628 (128K Context length):
Input - $0.14 / 1M tokens
Output - $0.28 / 1M tokens


⚠️ Размер модели ~ 480 Gb, для локального запуска формата BF16 потребуется 8х80GB GPU`s.

⚖️ Лицензирование кода: MIT
⚖️ Лицензирование модели: Своя лицензия семейства DeepSeek-v2

🟡Страница проекта
🟡Arxiv
🟡Модель на HF


@ai_machinelearning_big_data

#LLM #DeepSeekV2 #ML
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
6🔥3🥰1