Анализ данных (Data analysis)
46.3K subscribers
2.31K photos
264 videos
1 file
2.05K links
Data science, наука о данных.

@haarrp - админ

@itchannels_telegram - 🔥 главное в ит

@ai_machinelearning_big_data - ML

@machinelearning_interview - вопросы с собесдований по Ml

РКН: clck.ru/3FmyAp
Download Telegram
🌟 create-llama — самый простой способ создать приложение с помощью LlamaIndex

npx create-llama@latest
npm run dev


Create-llama позволяет создать мультиагентное full-stack приложение букально в 1 строчку кода.
Достаточно просто ввести npx create-llama, выбрать шаблон мультиагента и следовать инструкциям в файле README.

🖥 GitHub

@data_analysis_ml
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍86🔥5
🌟 StreamingDataset — библиотека потоковой передачи данных для эффективного обучения нейронных сетей

pip install mosaicml-streaming

StreamingDataset — это библиотека Python, созданная, чтобы сделать обучение на больших наборах данных максимально быстрым, дешевым и масштабируемым.
StreamingDataset спроектирована для распределенного обучения больших ML-моделей — с максимальными гарантиями корректности, производительностью и простотой использования.

🖥 GitHub
🟡 Доки

@data_analysis_ml
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
11👍4🔥3
🌟 Marvin — open-source набор инструментов для ML-приложений

pip install marvin -U

Marvin — это легковесный набор инструментов на Python для создания ML-приложений;
позволяет решать задачи классификации текста, извлечения информации из неструктурированных данных, генерирования синтетических данных, преобразования текста в речь и наоборот.
Marvin даже может генерировать изображения

🖥 GitHub
🟡 Доки

@data_analysis_ml
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
9👍9🔥4
Forwarded from Machinelearning
🌟 ControlNet++ — улучшенная версия вспомогательной технологии для генерации изображений

ControlNet++ использует дискриминационные модели вознаграждения для оптимизации согласованности между входными условиями (изрбражение-референс) и результатами генерации за счет оптимизации последовательности циклов.

Согласно опубликованным бенчмаркам, ControlNet++ значительно улучшает управляемость процессом генерации.
Новый метод метод превосходит классический ControlNet:
- на 7.9% по mIoU;
- на 13.4% по SSIM;
- на 7.6% по RMSE.

Адаптации под UI для Stable Diffusion пока нет.
Еще круче то, что контролнеты++ успели упаковать в Controlnet Union и собрали в 1 модель.

Теперь можно разом делать 12 препроцессов с одной модели CN.

👉 Репозиторий https://huggingface.co/xinsir/controlnet-union-sdxl-1.0

Модель safetensors без конфига в папку с Контролнетом Автоматика1111 или ComfyUI.

Это все действия которые необходимо сделать)

А самое главное - больше не нужно качать тонну моделей и следить в UI что нужный препроцессор выбран.

Работает controlnet union на SDXL-моделях. Для SD3 свой контролнет, для SD1.5 -свой, этот работать не будет.

👉 Видео: https://www.youtube.com/watch?v=UBFEw1IUX_I

🖥 GitHub [ Stars: 274 | Issues: 2 | Forks: 11 ]
🟡 Страничка проекта ControlNet++
🟡 Arxiv
🟡 Демо на HF
🟡 Модели на HF

#ControlNet #Diffusers #Image2Image

@ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
6🔥5👍3
🌟 Flair — мощная библиотека для NLP

pip install flair

Библиотека Flair была разработана Берлинским университетом как библиотека NLP с большими возможностями.
Flair позволяет проводить распознавание именованных сущностей (NER), анализ эмоциональной составляющей, тегирование части речи (PoS).
Помимо этого Flair может работать с биомедицинскими текстами.

Также Flair интегрируется с большим количеством других библиотек.

🖥 GitHub
🟡 Доки

@data_analysis_ml
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥115👍3
⚡️ Adversarial Robustness Toolbox — библиотека Python для обеспечения безопасности ML-приложений

pip install adversarial-robustness-toolbox

ART — это библиотека Python, которая предоставляет инструменты для оценивания, защиты и проверки моделей и ML-приложений на предмет разных угроз и уязвимостей.
ART поддерживает все популярные фреймворки машинного обучения (в т.ч. TensorFlow, Keras, PyTorch, MXNet, scikit-learn, XGBoost, LightGBM, CatBoost, GPy), все типы данных (изображения, таблицы, аудио, видео) и может использоваться для любых задачи ML (классификация, обнаружение объектов, генерация музыки, изображений и т. д.).

🖥 GitHub
🟡 Доки
🟡 Примеры атак и использования ART

@data_analysis_ml
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍76🔥4🤨1
🧠 Наконец-то кто-то создал leetcode для машинного обучения.


Этот сайт предлагает задачки разной сложности в категориях линейной алгебры, машинного и глубокого обучения, анализа данных.

Он полезен для всех, кто хочет углубить свои знания, улучшить навыки и попрактиковаться в машинном обучении. На сайте указаны уровни сложности, есть интерфейс для ввода своего решения и правильные ответы.

Только что выполнил первое упражнение: вычисление матрично-векторного произведения без каких-либо тензорных операций (разрешены только списки на python).

https://deep-ml.com

@data_analysis_ml
👍4414🔥11