Анализ данных (Data analysis)
46.8K subscribers
2.5K photos
287 videos
1 file
2.18K links
Data science, наука о данных.

@haarrp - админ

@itchannels_telegram - 🔥 главное в ит

@ai_machinelearning_big_data - ML

@machinelearning_interview - вопросы с собесдований по Ml

РКН: clck.ru/3FmyAp
Download Telegram
🔥 Дайджест полезных материалов из мира Data Science за неделю

Почитать:
Как извлекать пользу из данных: подборка материалов
Что нового в Apache Spark 3.4.0 — Spark Connect — Доработки для Shuffle
Инструменты продуктового аналитика VK, или Как мы работаем с большими данными
Наиболее часто используемые команды Linux
79 Ресурсов, которые следует прочитать, чтобы улучшить свои навыки в области проектирования систем:
Бесплатные сертификационные курсы для специалистов по данным
Бесконечные проверки – к успешному развитию: как мы обеспечиваем качество данных
Как мы наводим порядок с данными в столичном транспортном институте
Introduction to NannyML: Model Evaluation without labels
AI in Finance: Transforming Investment Strategies and Risk Management
How to Use Pandas for Data Analysis
Telemedicine capabilities expanded through artificial intelligence
Google Cloud Storage com Python: Um Guia Completo
Navigating Financial Insights: Analyzing Stock Data with Python and Visualization
Unveiling Joint Variability: Exploring Covariance
Navigating Financial Relationships: Understanding Correlation in Finance
Amazon QuickSight Summary
6 Data Science Projects That Can Supercharge Your Job Prospects!

Посмотреть:
🌐 Mixtral 8x7B - это сет из 8 нейронок, которые работают вместе
🌐 How to use Llama2 locally ( 09:00)
🌐 Ollama — модель уровня GPT. Используй GPT без ограничений и абсолютно бесплатно. ( 07:40)
🌐 Shutil: лучший инструмент для управления файлами Python. ( 17:05)
🌐 💡Задача Python: Максимальное среднее подмассива ( 01:00)
🌐 Как использовать API ChatGpt. Работа с Api c нуля ( 12:42)
🌐 Нахождение позиций в отсортированном массиве #python #array #shorts #сортировка ( 00:40)
🌐 Lightning Interview "Catastrophic AI Risks" ( 01:04:57)
🌐 Finetuning, Serving, and Evaluating LLMs in the Wild - Hao Zhang, PhD ( 29:20)
🌐 New AI: 6,000,000,000 Steps In 24 Hours! ( 08:28)
🌐 NVIDIA’s New AI: Virtual Worlds From Nothing! + Gemini Update! ( 09:40)

Хорошего дня!

@data_analysis_ml
👍178🔥6
🔥 Дайджест полезных материалов из мира Data Science за неделю

Почитать:
100 вопросов для подготовки к собесу Python
Большой тест GPT4, GPT3.5, YandexGPT, GigaChat, Saiga в RAG-задаче. Часть 1
— Полный отчет Github за 2023 о состоянии проектов.
9 вопросов для собеседования по SQL в Apple
Геометрия и навигация
Разметка данных в 2023 году: текущие тренды и требования будущего
fsspec и вообще зачем оно нам нужно
Как мы переезжали с PostgreSQL на Data Lake в AWS и какие грабли собрали по пути
Расчетная архитектура платформы для A/B-тестов Mail.Ru
Automate the boring stuff with Julia
Трёхканальный ИИ
Decoding a Data Model: Using SchemaSpy in Snowflake ❄️
Quickly create a personalized data dashboard for your boss.
What Is Data Analysis and How Can You Get Started?
Explorando as Funções Específicas da Biblioteca google-cloud-storage no Google Cloud Platform
Microsoft PHI-2 + Huggine Face + Langchain = Super Tiny Chatbot
How to rank Fungible Tokens in the TON blockchain by transactions
A good resource on Algorithms!
High-level overview of AWS Glue
What is the population of that region?
Streamlined Data Processing: A Guide to Cost-Effective ELT Implementation

Посмотреть:
🌐 Mixtral 8x7B - новый ИИ. Нейросети, которые ДОМИНИРУЮТ на другими моделями ( 08:04)
🌐 100 вопросов с собеседований Python. Полный разбор реальных вопросов. ( 34:27)
🌐 💡Задача #Python:Комбинация сумм II #python #программирование #код #yotube #youtube #пито ( 00:54)
🌐 💡Крутая задача #Python: #python #программирование #код #yotube #youtube #питон ( 00:49)
🌐 ODSC Webinar | Preparing for your First Enterprise Large Language Model (LLM) Application ( 48:16)
🌐 Adversarial Validation and Training in Stock Market Price Prediction ( 28:09)
🌐 NVIDIA’s New AI Is 20x Faster…But How? ( 08:16)
🌐 Here’s How ChatGPT is Changing The World! ( 08:33)

Хорошего дня!

@data_analysis_ml
👍14🔥53🥰3
🔥 Дайджест полезных материалов из мира Data Science за неделю

Почитать:
100 вопросов для подготовки к собесу Data Science
Сколько ядер CPU можно использовать параллельно в Python?
Вот так я изучаю ML
PLC Allen Bradley подключение с помощью Python
Ortools — библиотека для решения задачи VRP
4 миллиарда операторов if
Python без типов: таким он когда-то был
Вы точно хотите быть Data Scientist-ом?
Введение в SQL & СУБД на примере доступа к данным через Python
Plotting and Data Visualization with Matplotlib
Applications of Data Science
Semantic Search Over Satellite Images Using Qdrant
Introduction to Data Science
A Comprehensive Guide: How Deepchecks Evaluate the Large Language Model
Appreciating the "Learning Problem" - Why AI will never replace your job
Best JavaScript Chart Libraries 2024: Finding the Right Fit for Your JS Applications
NumPy Arrays: An Introduction
Hungarian GP 2022 Qualifying, and see what we can
I built Hippotable for in-browser data analysis
Десять самых ярких ИИ-работ от NVIDIA Research за 2023 год

Посмотреть:
🌐 100 вопросов с собеседований Data Science — часть 1 ( 36:48)
🌐 💡 Задача: Ряд клавиатуры #Python #yotube #код #алгоритмы #программирование #собеседование #кодинг ( 00:40)
🌐 💡задача #Python: Бинарный поиск #python #программирование #код #yotube #питон #собеседование ( 00:41)
🌐 💡 Задача: Ряд клавиатуры #Python #yotube #код #алгоритмы #программирование #собеседование #кодинг ( 01:00)
🌐 Evaluating Recommendation Algorithms at Delivery Hero - Manchit Madan ( 23:01)
🌐 ODSC Webinar | Open source Data Lake Management, Curation, Governance for New & Growing Companies ( 46:07)
🌐 Stable Diffusion AI: 100 Cats Per Second…For Free! ( 08:21)

Хорошего дня!

@data_analysis_ml
17👍12🔥2
This media is not supported in your browser
VIEW IN TELEGRAM
🌍 НАСА размещает на #AWS более 9 000 продуктов данных о нашей планете!

🚀
В этом хранилище представлен полный список данных НАСА по наукам о Земле, доступных для исследований и анализа. Данные управляются и поддерживаются программой НАСА "Системы данных по наукам о Земле" (ESDS), которая обеспечивает доступность и удобство использования данных.

Узнайте, как легко найти и загрузить данных с помощью последнего руководства по #leafmap. 📚🔎

📓 Notebook: https://leafmap.org/notebooks/88_nasa_earth_data
🗂️ Data Catalog: https://github.com/opengeos/NASA-Earth-Data
🎥 Video: https://youtu.be/0ytxNNvc2Hg

#opendata #geospatial #python #dataviz #NASA

@data_analysis_ml
18👍13🔥7👎1
Функция zip() в Python создает итератор, который объединяет элементы из нескольких источников данных. Эта функция работает со списками, кортежами, множествами и словарями для создания списков или кортежей, включающих все эти данные.

Если источники данных разной длины, то объединение может привести к ошибкам ошибкам.

Начиная с #Python 3.10, использование ключевого слова strict в функции zip выховет ошибку ValueError, если длина итераций неравна.

@data_analysis_ml
19👍9🔥6🤯3