Анализ данных (Data analysis)
47.1K subscribers
2.64K photos
303 videos
1 file
2.29K links
Data science, наука о данных.

@haarrp - админ

@itchannels_telegram - 🔥 главное в ит

@ai_machinelearning_big_data - ML

@machinelearning_interview - вопросы с собесдований по Ml

РКН: clck.ru/3FmyAp
Download Telegram
🚀 Примеры ChatKit для разработчиков

Репозиторий содержит продвинутые примеры использования ChatKit, включая интеграцию FastAPI и Vite + React. Он демонстрирует, как создать сервер ChatKit с помощью Python SDK и использовать различные инструменты для взаимодействия с клиентом.

🚀 Основные моменты:
- Полный шаблон проекта с фронтендом и бэкендом.
- Интеграция с инструментами для получения погоды и переключения тем.
- Легкая разработка с проксированием запросов через Vite.

📌 GitHub: https://github.com/openai/openai-chatkit-advanced-samples

#python
6👍4🔥3
💰 Оценка токенов влиятельных лиц с помощью ИИ

Проект анализирует токены социальных медиа-влиятельных лиц, предоставляя оценку их рыночной капитализации. Пользователи вводят имя или ссылку на профиль, а ИИ проводит анализ данных, включая активность и влияние, для прогнозирования стоимости криптовалюты, связанной с этим влиятельным лицом.

🚀 Основные моменты:
- Оценка токенов для любых влиятельных лиц
- Анализ влияния и активности с помощью ИИ
- Обнаружение манипуляций на рынке
- Прогнозирование рыночной капитализации криптовалюты
- Расширяемая архитектура для интеграции новых источников данных

📌 GitHub: https://github.com/Aihy/CLOV

#python
4👍3🔥2
🧠 DiffMem: Git-Based Memory for AI Agents

DiffMem предлагает легковесную память для ИИ, использующую Git для отслеживания изменений и Markdown для хранения данных. Этот проект демонстрирует, как системы контроля версий могут стать основой для эффективной и масштабируемой памяти в приложениях ИИ, позволяя агентам быстро получать актуальную информацию и исследовать её эволюцию.

🚀 Основные моменты:
- Хранит "текущие" состояния знаний в Markdown.
- Использует Git для управления историей изменений.
- Обеспечивает быстрый и объяснимый поиск с помощью BM25.
- Поддерживает гибкость и портативность данных.
- Легко интегрируется и не требует серверов.

📌 GitHub: https://github.com/Growth-Kinetics/DiffMem

#python
🔥94👍4
🚀 Построение многоагентных систем с Laddr

Laddr — это фреймворк на Python для создания масштабируемых многоагентных систем, где агенты могут общаться, делегировать задачи и выполнять работу параллельно. Он предлагает гибкие архитектурные решения с поддержкой наблюдаемости и горизонтального масштабирования.

🚀Основные моменты:
- Модели работы: координация и последовательные потоки.
- Высокая производительность с автоматическим балансировкой нагрузки.
- Полная трассировка действий агентов и интерактивная панель мониторинга.
- Легкость в разработке с чистым CLI и поддержкой горячей перезагрузки.
- Совместимость с различными хранилищами и моделями AI.

📌 GitHub: https://github.com/AgnetLabs/Laddr

#python
10🔥4👍3