🛠️ Fine-tuning GPT-OSS и деплой в FP4
Простое дообучение в MXFP4 часто рушит качество модели.
NVIDIA показала рабочий рецепт: совмещаем fine-tuning с Quantization-Aware Training (QAT), а затем возвращаем модель в 4-битную точность — быстро и без потери качества при инференсе.
🚀 В блоге:
- Пошаговый QAT-гайд с кодом
- Бенчмарки после fine-tune + QAT
- Как NVFP4 на Blackwell даёт ещё больше точности
📖 Полный рецепт в NVIDIA Model Optimizer: https://developer.nvidia.com/blog/fine-tuning-gpt-oss-for-accuracy-and-performance-with-quantization-aware-training/
Простое дообучение в MXFP4 часто рушит качество модели.
NVIDIA показала рабочий рецепт: совмещаем fine-tuning с Quantization-Aware Training (QAT), а затем возвращаем модель в 4-битную точность — быстро и без потери качества при инференсе.
🚀 В блоге:
- Пошаговый QAT-гайд с кодом
- Бенчмарки после fine-tune + QAT
- Как NVFP4 на Blackwell даёт ещё больше точности
📖 Полный рецепт в NVIDIA Model Optimizer: https://developer.nvidia.com/blog/fine-tuning-gpt-oss-for-accuracy-and-performance-with-quantization-aware-training/
❤8🔥2👍1