🎉 Выпущен Техрепорт Wan! 🚀
📖 https://arxiv.org/abs/2503.20314
Wan 2.1 — это открытый инструмент для генерации видео от Alibaba.
В отчете описана архитектура модели, конвейер обработки данных, обучение модели, повышение ее эффективности, алгоритм редактирования видео и т. д.
🟢 Официальный сайт: https://wan.video
🟢 Github: https://github.com/Wan-Video/Wan2.1
🟢 HF: https://huggingface.co/Wan-AI
🟢 Modelscope: https://modelscope.cn/organization/Wan-AI
#WAN #OpenSource #VideoGeneration
📖 https://arxiv.org/abs/2503.20314
Wan 2.1 — это открытый инструмент для генерации видео от Alibaba.
В отчете описана архитектура модели, конвейер обработки данных, обучение модели, повышение ее эффективности, алгоритм редактирования видео и т. д.
#WAN #OpenSource #VideoGeneration
Please open Telegram to view this post
VIEW IN TELEGRAM
❤7👍3🔥2
This media is not supported in your browser
VIEW IN TELEGRAM
⚡️ Этот гайд демонстрирует, как использовать Florence 2 с Ultralytics YOLO для обнаружения объектов, сегментации изображений и создания визуализаций на основе текстовых промпов, например, для создания подписей к изображениям.
Microsoft выпустила модель Florence-2 в прошлом году. Это мощная CV модель зрения, которая использует подход, на подсказках, для решения широкого спектра задач, связанных со зрением и языком зрения. Она может интерпретировать простые текстовые подсказки для выполнения таких задач, как создание надписей, обнаружение объектов и сегментация.
Для обучения в гайде используется набор данных FLD-5B, содержащий 5,4 миллиарда аннотаций к 126 миллионам изображений.
📌 Гайд
📌 Colab
@data_analysis_ml
Microsoft выпустила модель Florence-2 в прошлом году. Это мощная CV модель зрения, которая использует подход, на подсказках, для решения широкого спектра задач, связанных со зрением и языком зрения. Она может интерпретировать простые текстовые подсказки для выполнения таких задач, как создание надписей, обнаружение объектов и сегментация.
Для обучения в гайде используется набор данных FLD-5B, содержащий 5,4 миллиарда аннотаций к 126 миллионам изображений.
📌 Гайд
📌 Colab
@data_analysis_ml
👍9❤3🔥3
AI-агенты для девелоперской компании
ГК ФСК, крупный российский девелопер, столкнулся с проблемой обработки массивов данных. Техническая документация часто обновляется, из-за чего сотрудникам и клиентам сложно получить доступ к актуальной информации. Чтобы решить проблему, red_mad_robot внедрили смарт-платформу с двумя AI-агентами на базе RAG:
Для клиентов: AI-ассистент в чат-боте сайта обрабатывает запросы и выдаёт актуальные ответы на вопросы о квартирах (включая детали вроде панорамных окон), ипотеке и акциях.
Для сотрудников: Внутренний AI-агент, интегрированный с корпоративными системами, позволяет команде поддержки и продаж находить нужные данные (регламенты, детали ЖК).
Подробнее о технических деталях кейса можно почитать в статье на Хабр.
ГК ФСК, крупный российский девелопер, столкнулся с проблемой обработки массивов данных. Техническая документация часто обновляется, из-за чего сотрудникам и клиентам сложно получить доступ к актуальной информации. Чтобы решить проблему, red_mad_robot внедрили смарт-платформу с двумя AI-агентами на базе RAG:
Для клиентов: AI-ассистент в чат-боте сайта обрабатывает запросы и выдаёт актуальные ответы на вопросы о квартирах (включая детали вроде панорамных окон), ипотеке и акциях.
Для сотрудников: Внутренний AI-агент, интегрированный с корпоративными системами, позволяет команде поддержки и продаж находить нужные данные (регламенты, детали ЖК).
Подробнее о технических деталях кейса можно почитать в статье на Хабр.
👍9❤4🔥3
Подробное руководство от TecMint, демонстрирующее, как установить и запустить модель DeepSeek локально на Linux (Ubuntu 24.04) с использованием Ollama.
Гайд охватывает все этапы установки: обновление системы, инсталляцию Python и Git, настройку Ollama для управления DeepSeek, а также запуск модели через командную строку или с помощью удобного Web UI.
▪ Руководство также включает инструкции по автоматическому запуску Web UI при старте системы через systemd, что делает работу с моделью более комфортной и доступной.
Подойдет для тех, кто хочет исследовать возможности работы с крупными языковыми моделями без привязки к облачным сервисам, обеспечивая полный контроль над моделью и её настройками.
▪ Читать
Please open Telegram to view this post
VIEW IN TELEGRAM
👍17❤5🔥2
Эти описания охватывают широкий спектр роботов: от манипуляторов и гуманоидов до дронов и мобильных манипуляторов. Каждое описание включает информацию о производителе, формате файла, лицензии и наличии визуализаций, инерций и коллизий.
Форматы URDF (Unified Robot Description Format), Xacro и MJCF (MuJoCo XML) используются для описания кинематических и динамических характеристик роботов.
Эти описания необходимы для симуляции, планирования движений и управления роботами в различных программных средах.
▪ GitHub
Please open Telegram to view this post
VIEW IN TELEGRAM
👍7❤3🔥3
Media is too big
VIEW IN TELEGRAM
▪️Github
@data_analysis_ml
Please open Telegram to view this post
VIEW IN TELEGRAM
👍9❤5🔥4
This media is not supported in your browser
VIEW IN TELEGRAM
Весь X/twitter завален конентом с генерациями в стиле Ghibli,
если вам надоел такой контент, умельцы создали Chrome расширение с открытым исходным кодом для удаления таких твитов.
📌 Github
@data_analysis_ml
Please open Telegram to view this post
VIEW IN TELEGRAM
❤9😁8🔥3👍1👏1
📌Пройдите тест из 9 вопросов и проверьте, насколько вы готовы к обучению на курсе «BI-аналитика» от OTUS.
Вы научитесь на курсе:
+ Визуализировать данные с помощью Power BI, Tableau и Analytic Workspace.
+ Создавать интерактивные дашборды и аналитические панели на Python в Dash, Numpy, Pandas, Matplotlib, Seaborn и Plotly.
+ Работать с Big Data и использовать решения с открытым исходным кодом в BI-аналитике.
+ Работать с DAX-формулами.
+ Обрабатывать и трансформировать данные в Power Query, создавать модели данных в Power Pivot.
🦉В честь дня рождения Отус, скидка 10% до 01.04
🎁Так же промо-код на курс «BI-аналитика» со скидкой 5% (суммируется на сайте):
BI_04 до 18.05. Успейте купить выгодно!
👉ПРОЙТИ ТЕСТ: https://otus.pw/8QNY/?erid=2W5zFJGJRLU
Реклама. ООО «Отус онлайн-образование», ОГРН 1177746618576
#реклама
О рекламодателе
Вы научитесь на курсе:
+ Визуализировать данные с помощью Power BI, Tableau и Analytic Workspace.
+ Создавать интерактивные дашборды и аналитические панели на Python в Dash, Numpy, Pandas, Matplotlib, Seaborn и Plotly.
+ Работать с Big Data и использовать решения с открытым исходным кодом в BI-аналитике.
+ Работать с DAX-формулами.
+ Обрабатывать и трансформировать данные в Power Query, создавать модели данных в Power Pivot.
🦉В честь дня рождения Отус, скидка 10% до 01.04
🎁Так же промо-код на курс «BI-аналитика» со скидкой 5% (суммируется на сайте):
BI_04 до 18.05. Успейте купить выгодно!
👉ПРОЙТИ ТЕСТ: https://otus.pw/8QNY/?erid=2W5zFJGJRLU
Реклама. ООО «Отус онлайн-образование», ОГРН 1177746618576
#реклама
О рекламодателе
❤4👍3
❓ LLaMA 4 уже на подходе?
На LMSYS Arena появились новые модели под названием “Spider” и “Cybele"
Также появилась модель, которая, судя по всему, принадлежит Google и называется Moonhowler.
@data_analysis_ml
На LMSYS Arena появились новые модели под названием “Spider” и “Cybele"
Также появилась модель, которая, судя по всему, принадлежит Google и называется Moonhowler.
@data_analysis_ml
❤7🔥4🤔2👍1
Forwarded from Machinelearning
Представлены значительные улучшения, особенно в области хранения и обработки больших моделей и датасетов.
Интеграция с Xet: Внедрена поддержка Xet — передового протокола для хранения крупных объектов в Git-репозиториях, призванного заменить Git LFS.
В отличие от LFS, который выполняет дедупликацию на уровне файлов, Xet работает на уровне фрагментов данных, что особенно полезно для специалистов, работающих с массивными моделями и датасетами.
Для интеграции с Python используется пакет
xet-core,
написанный на Rust, который обрабатывает все низкоуровневые детали.Чтобы начать использовать Xet, установите дополнительную зависимость:
pip install -U huggingface_hub[hf_xet]
После установки вы сможете загружать файлы из репозиториев, поддерживающих Xet.
Доплнительно:
huggingface-cli delete-cache
получила опцию --sort для сортировки кэшированных репозиториев (например, по размеру: --sort=size
).@ai_machinelearning_big_data
#huggingface #release #xet
Please open Telegram to view this post
VIEW IN TELEGRAM
👍6❤4🔥2
👍12❤4🔥4
This media is not supported in your browser
VIEW IN TELEGRAM
Данные и облака — наше все 🧠
На конференции GoCloud ты найдешь новые знания об инструментах обработки данных.
Обсудим интеграцию AI в аналитические процессы и тренды облачных технологий. А еще:
😶🌫️ покажем инструменты для упрощения процесса обработки данных
😶🌫️ поговорим с компаниями, которые уже работают с данными в облаке
😶🌫️ возможные риски потери данных и способы их предотвращения
😶🌫️ покажем архитектуру DBaaS поверх K8s
30+ докладов, нетворкинг, live-демо сервисов и afterparty ждут тебя 10 апреля.
Регистрация по ссылке👈
На конференции GoCloud ты найдешь новые знания об инструментах обработки данных.
Обсудим интеграцию AI в аналитические процессы и тренды облачных технологий. А еще:
30+ докладов, нетворкинг, live-демо сервисов и afterparty ждут тебя 10 апреля.
Регистрация по ссылке
Please open Telegram to view this post
VIEW IN TELEGRAM
❤4👍4🔥3
This media is not supported in your browser
VIEW IN TELEGRAM
Авито представил новую стратегию внедрения генеративного искусственного интеллекта (GenAI)
К 2028 году компания планирует инвестировать в это направление 12 млрд рублей и заработать более 21 млрд рублей.
🤖 Что это значит?
Авито презентовал свои собственные генеративные модели — A-Vibe и A-Vision, которые работают с текстом и изображениями соответственно. Модели обучены на базе нейросети Qwen2.5 с 7 млрд параметров и специализируются на задачах, связанных с покупкой и продажей. Например, A-Vibe помогает создавать качественные и лаконичные описания товаров, а A-Vision анализирует фотографии и повышает качество визуального контента.
Кроме того, в 2024 году Авито запустила магистратуру по Data Science в МФТИ. В сентябре 2025 года стартуют еще три новые программы: по разработке в ИТМО, Data Science и продуктовому менеджменту в НИУ ВШЭ.
🛠 Почему это важно?
Использование GenAI не только улучшает взаимодействие пользователей с платформой, но и приносит реальную экономическую выгоду. Уже в 2024 году первые запуски продуктов с использованием GenAI принесли компании 670 млн рублей. А в 2025-м запланировано внедрение 20 новых сценариев использования GenAI с потенциалом заработка более 1 млрд рублей.
@data_analysis_ml
К 2028 году компания планирует инвестировать в это направление 12 млрд рублей и заработать более 21 млрд рублей.
🤖 Что это значит?
Авито презентовал свои собственные генеративные модели — A-Vibe и A-Vision, которые работают с текстом и изображениями соответственно. Модели обучены на базе нейросети Qwen2.5 с 7 млрд параметров и специализируются на задачах, связанных с покупкой и продажей. Например, A-Vibe помогает создавать качественные и лаконичные описания товаров, а A-Vision анализирует фотографии и повышает качество визуального контента.
Кроме того, в 2024 году Авито запустила магистратуру по Data Science в МФТИ. В сентябре 2025 года стартуют еще три новые программы: по разработке в ИТМО, Data Science и продуктовому менеджменту в НИУ ВШЭ.
🛠 Почему это важно?
Использование GenAI не только улучшает взаимодействие пользователей с платформой, но и приносит реальную экономическую выгоду. Уже в 2024 году первые запуски продуктов с использованием GenAI принесли компании 670 млн рублей. А в 2025-м запланировано внедрение 20 новых сценариев использования GenAI с потенциалом заработка более 1 млрд рублей.
@data_analysis_ml
👍7❤4🥴4🔥2🐳1