Анализ данных (Data analysis)
46.3K subscribers
2.32K photos
269 videos
1 file
2.06K links
Data science, наука о данных.

@haarrp - админ

@itchannels_telegram - 🔥 главное в ит

@ai_machinelearning_big_data - ML

@machinelearning_interview - вопросы с собесдований по Ml

РКН: clck.ru/3FmyAp
Download Telegram
👩‍💻 mongoengine — Python-библиотека для работы с базами данных MongoDB, предоставляющая объектно-документный маппинг (ODM)!

🌟 Она позволяет разработчикам описывать документы в виде Python-классов с типизированными полями, делая работу с MongoDB удобной и похожей на использование ORM в реляционных базах.

🌟 Библиотека поддерживает валидацию данных, вложенные документы, связи между документами и удобные запросы через Python-методы. MongoEngine часто используется в проектах, где требуется сочетание гибкости MongoDB и строгой структуры данных.

🔐 Лицензия: MIT

🖥 Github

@data_analysis_ml
Please open Telegram to view this post
VIEW IN TELEGRAM
👍106🔥3
Alibaba только что выпустила Marco-o1

Marco-o1 основан на тонкой настройке цепочки (CoT), поиске по дереву Монте-Карло (MCTS), механизмах рефлексии и инновационных стратегиях рассуждения, оптимизированных для решения сложных задач в реальном мире.

Благодаря файнтюнингу Qwen2-7B-Instruct с использованием комбинации отфильтрованного набора данных Open-O1 CoT, набора данных Marco-o1 CoT и набора данных инструкций Marco-o1, Marco-o1 улучшил обработку сложных задач.

MCTS позволяет исследовать множество путей рассуждений ИИ, используя показатели достоверности, полученные на основе логарифмических вероятностей, применяемых softmax для топ-k альтернативных токенов, что приводит модель к оптимальным решениям.

Более того, такая стратегия обоснованных действий предполагает изменение степени детализации действий в рамках шагов и мини-шагов для оптимизации эффективности и точности поиска.

HF: https://huggingface.co/AIDC-AI/Marco-o1
Github: https://github.com/AIDC-AI/Marco-o1
Paper: https://arxiv.org/abs/2411.14405
Data: https://github.com/AIDC-AI/Marco-o1/tree/main/data

@data_analysis_ml
👍116🔥2🥴21
This media is not supported in your browser
VIEW IN TELEGRAM
🔥 LTX-видео

новая модель преобразования текста в видео позволяет создавать потясающие видеоролики высокого качества.

5 секунд видео со скоростью 24 кадра в секунду при разрешении 768x512 пикселей всего за 4 секунды на Nvidia H100.

Открытый код и веса

https://huggingface.co/spaces/Lightricks/LTX-Video-Playground

@data_analysis_ml
🔥114👍4🥱3🤣1
💥 Nvidia представили нового лидера в области создания 3D-моделей — Edify 3D AI.

Они обещают модели в разрешении 4K при 120 FPS, сетки с высокой детализацией геометрии, качественные текстуры и точные цвета альбедо (забавно, как они обозначили белый цвет).

Собственных моделей от Nvidia я пока не обнаружил, однако у них также есть нейросеть от Shutterstock, работающая по той же технологии.

📌 Смотреть

@data_analysis_ml
🔥72👍1🤣1
🔍 Instructor — библиотека для работы с структурированными выходными данными из больших языковых моделей (LLM)!

🌟 Она написана на Python и предоставляет упрощённый интерфейс для управления потоками данных LLM. Она включает функции для валидации данных, обработки ошибок и управления ответами моделей.

🔐 Лицензия: MIT

🖥 Github

@data_analysis_ml
Please open Telegram to view this post
VIEW IN TELEGRAM
9👍5🔥2🙏1
This media is not supported in your browser
VIEW IN TELEGRAM
👍 EchoMimicV2: Towards Striking, Simplified, and Semi-Body Human Animation 🔥

Мощный и простой инструмент для генерации анимации человека по фото.

🌐page: https://antgroup.github.io/ai/echomimic_v2/
🧬code: https://github.com/antgroup/echomimic_v2
📄paper: https://arxiv.org/abs/2411.10061

@data_analysis_ml
Please open Telegram to view this post
VIEW IN TELEGRAM
👍104🔥3🥱1🥴1🤣1
📖 Большие языковые модели продемонстрировали существенные достижения в возможностях рассуждений, особенно за счет масштабирования времени вывода, как показано на таких моделях, как o1 от OpenAI.

🌟 Однако текущие модели Vision-Language (VLM) часто испытывают трудности с выполнением систематических и структурированных рассуждений, особенно при обработке сложных визуальных задач с ответами на вопросы. В этой работе авторы представляют LLaVA-o1, новую VLM, предназначенную для проведения автономных многоступенчатых рассуждений! В отличие от подсказок цепочки мыслей, LLaVA-o1 независимо участвует в последовательных этапах резюмирования, визуальной интерпретации, логических рассуждений и генерации выводов.

🌟 Этот структурированный подход позволяет LLaVA-o1 достигать заметных улучшений в точности при выполнении задач с интенсивным рассуждением!

🔗 Ссылка на статью: *клик*

@data_analysis_ml
Please open Telegram to view this post
VIEW IN TELEGRAM
8👍5🔥4👌1
🔥 PR-Agent — инструмент с открытым исходным кодом, разработанный для упрощения процесса обзора pull-реквестов!

💡 Используя возможности искусственного интеллекта (например, GPT-4), он автоматически анализирует PR и предоставляет такие функции, как:

🌟 Генерация описания PR, включая заголовок, тип, основные изменения и метки.

🌟 Автоматический обзор с рекомендациями по тестированию, безопасности и улучшениям.

🌟 Ответы на вопросы о PR, улучшения кода и автоматическое обновление CHANGELOG.

🌟 Добавление документации для недокументированных функций или классов.

💡 PR-Agent поддерживает интеграцию с GitHub, GitLab, Bitbucket и другими платформами. Его можно использовать как через командную строку, так и через вебхуки или бота. Этот инструмент помогает ускорить и улучшить качество процесса код-ревью.

🔐 Лицензия: Apache-2.0

🖥 Github

@data_analysis_ml
Please open Telegram to view this post
VIEW IN TELEGRAM
11👍5🔥4👏1
⚡️ SmolVLM: новая МДЬ модель созданая для использования на устройствах, легко настраиваемый на GPU и чрезвычайно эффективный с точки зрения памяти

Лицензия Apache 2.0: https://huggingface.co/collections/HuggingFaceTB/smolvlm-6740bd584b2dcbf51ecb1f39
Блог: https://huggingface.co/blog/smolvlm
Демо: https://huggingface.co/spaces/HuggingFaceTB/SmolVLM
Файнтюнинг: https://github.com/huggingface/smollm/blob/main/finetuning/Smol_VLM_FT.ipynb
9👍2🔥2
🔥 Multi-Agent Orchestrator — фреймворк, разработанный для управления несколькими AI-агентами!

💡 Он позволяет маршрутизировать запросы пользователей, обеспечивать управление контекстом взаимодействий и поддерживать масштабируемую архитектуру приложений.

🔍 Основные возможности:

🌟 Классификация запросов: Использует LLM для выбора наиболее подходящего агента на основе контекста, истории взаимодействий и описания агентов.

🌟 Гибкость агентов: Поддерживает интеграцию различных агентов, таких как Amazon Bedrock, OpenAI, AWS Lambda и прочих пользовательских решений.

🌟 Управление контекстом: Обеспечивает сохранение и использование истории взаимодействий для последовательных ответов.

🌟 Расширяемая архитектура: Легкая интеграция новых агентов и настройка существующих для решения задач в различных доменах.

🌟 Универсальное развертывание: Подходит для локальных и облачных окружений, включая AWS Lambda.

🔐 Лицензия: Apache-2.0

🖥 Github

@data_analysis_ml
Please open Telegram to view this post
VIEW IN TELEGRAM
9🔥6👍4
OminiControl: универсальный инструмент генерации изображений Diffusion Transformer.

🧬Код: https://github.com/Yuanshi9815/OminiControl
📄Статья: https://arxiv.org/abs/2411.15098
🍇runpod: https://github.com/camenduru/ominicontrol-tost
🍊jupyter от https://modelslab.com: https://github.com/camenduru/ominicontrol-jupyter
7🔥1🥱1🥴1🤣1
Forwarded from Machinelearning
⚡️ NeuZip: метод сжатия весов для обучения и инференса.

NeuZip - алгоритм сжатия весов нейронных сетей, разработанный для снижения требований к памяти во время обучения и инференса без ущерба для производительности.

В основе NeuZip лежит принцип энтропии чисел с плавающей запятой в нейронных сетях. Веса нейронных сетей концентрируются вокруг нуля, что приводит к низкой энтропии битов экспоненты, а значит, почему бы не сжимать биты экспоненты без потерь с помощью асимметричной системы счисления (ANS)?

ANS — это алгоритм сжатия без потерь, который обеспечивает высокую пропускную способность на параллельных вычислительных устройствах, например, на GPU.


Для обучения используется вариант NeuZip без потерь, который сжимает только биты экспоненты, сохраняя полную точность представления чисел. В процессе обучения веса хранятся в сжатом виде, а декомпрессия происходит послойно, непосредственно перед вычислениями . Это позволяет избежать дублирования памяти и снизить ее пиковое потребление. При этом backpropagation не затрагивается, так как градиенты вычисляются с использованием декомпрессированных весов.

Для инференса предлагается вариант NeuZip с потерями, который дополнительно сокращает объем памяти, усекая биты мантиссы. Потеря точности при таком подходе незначительно влияет на производительность. Эффективность сжатия достигается блочной нормализацией, при которой веса нормализуются внутри блоков, а коэффициенты нормализации хранятся с 8-битной точностью.

Эксперименты, проведенные на различных архитектурах (GPT, Llama, T5) и задачах (языковое моделирование, генерация SQL), подтвердили эффективность NeuZip. В частности, при обучении модели Llama-3 8B удалось сократить потребление памяти с 31 ГБ до менее 16 ГБ без изменения динамики обучения.

В задачах инференса NeuZip демонстрирует достижение >50% сокращения памяти при сохранении практически идентичной производительности по сравнению с QLoRA и современными методами квантования.

⚠️ Код экспериментов из пейпера в задачах обучения и инференса с Neuzip доступен в /examples репозитория проекта на Github.

▶️Установка и использование:

# Install from PyPI
pip install neuzip

# Use Neuzip for Pytorch model
model: torch.nn.Module = # your model
+ manager = neuzip.Manager()
+ model = manager.convert(model)



🟡Arxiv
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #LLM #NeuZip
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
13👍10