🔥Актуальные плейлисты и руководства для дата сайентистов.
1. Полный плейлист по аналитике данных и науки о данных на Python
• Python на английском языке
• Плейлист на русском
2. Полный плейлист по статистике для аналитики данных и науки о данных
• Лекции и семинары по курсу "Математическая статистика" на русском
•. Статистика на английском языке
• Плейлист статистики на английском языке
3. Полный SQL для аналитики и науки о данных
• Полный плейлист по SQl на английском языке
• Базовый курс по SQL для аналитиков и менеджеров на русском
4. Учебники по Git и Github
• Учебники по Git и Github на английском языке
• Git курс
5. EDA и Feature Engineering и Feature Selection
• Плейлист по Feature Engineering
• Выбор функций
6. Плейлист по машинному обучению
• Плейлист курс ML на английском языке
• Новый плейлист куос ML 2023 на английском языке.
• Машинное обучение на английском языке:
• Машинное обучение на русском
7. Полный плейлист по глубокому обучению и NLP
• NLP плейлист
• Полный плейлист NLP Live на английском языке
8. Важные фреймворки для производственных развертываний
• Подробный плейлист по Flask на английском языке
• BentoML Tutorial
• Gradio Crash Course
9. Полный комплект инструментов AWS Sagemaker и Sagemaker Studio
• Плейлист Sagemaker
10. Полное руководство по MLOPS
• Полный комплект Dockers In One Shot Английский язык
• Учебные пособия MLFLOW с развертыванием
• Мониторинг модели Evidently AI
11. Конечные проекты ML, DL и NLP - весь жизненный цикл до развертывания с использованием инструментов с открытым исходным кодом
• Плейлист End To End ML Projects на английском языке
12. Генеративный ИИ и открытый ИИ Плейлист
• OPENAI Playlist English(In Progress)
• Langchain Playlist(In Progress)
13. Полное руководство по Pyspark
• Плейлист Pyspark
14. Полный список вопросов для собеседования по науке о данных, машинному обучению и глубокому обучению
https://t.iss.one/data_analysis_ml?boost - поддержите нас голосом, а мы подготовим вам больше полезных подборок
1. Полный плейлист по аналитике данных и науки о данных на Python
• Python на английском языке
• Плейлист на русском
2. Полный плейлист по статистике для аналитики данных и науки о данных
• Лекции и семинары по курсу "Математическая статистика" на русском
•. Статистика на английском языке
• Плейлист статистики на английском языке
3. Полный SQL для аналитики и науки о данных
• Полный плейлист по SQl на английском языке
• Базовый курс по SQL для аналитиков и менеджеров на русском
4. Учебники по Git и Github
• Учебники по Git и Github на английском языке
• Git курс
5. EDA и Feature Engineering и Feature Selection
• Плейлист по Feature Engineering
• Выбор функций
6. Плейлист по машинному обучению
• Плейлист курс ML на английском языке
• Новый плейлист куос ML 2023 на английском языке.
• Машинное обучение на английском языке:
• Машинное обучение на русском
7. Полный плейлист по глубокому обучению и NLP
• NLP плейлист
• Полный плейлист NLP Live на английском языке
8. Важные фреймворки для производственных развертываний
• Подробный плейлист по Flask на английском языке
• BentoML Tutorial
• Gradio Crash Course
9. Полный комплект инструментов AWS Sagemaker и Sagemaker Studio
• Плейлист Sagemaker
10. Полное руководство по MLOPS
• Полный комплект Dockers In One Shot Английский язык
• Учебные пособия MLFLOW с развертыванием
• Мониторинг модели Evidently AI
11. Конечные проекты ML, DL и NLP - весь жизненный цикл до развертывания с использованием инструментов с открытым исходным кодом
• Плейлист End To End ML Projects на английском языке
12. Генеративный ИИ и открытый ИИ Плейлист
• OPENAI Playlist English(In Progress)
• Langchain Playlist(In Progress)
13. Полное руководство по Pyspark
• Плейлист Pyspark
14. Полный список вопросов для собеседования по науке о данных, машинному обучению и глубокому обучению
https://t.iss.one/data_analysis_ml?boost - поддержите нас голосом, а мы подготовим вам больше полезных подборок
👍38❤9🔥6
🔥 Дайджест полезных материалов из мира Машинного обучения за неделю
Почитать:
— Обслуживание моделей PyTorch с помощью TorchServe
— Нейростроительное MVP или Почему иногда стоит возрождать проекты
— Microsoft предлагает БЕСПЛАТНЫЕ онлайн курсы с сертификацией
— 7 шагов по контейнеризации Python-приложений
— MySQL в Google Colab: Бесшовная интеграция
— Как выбрать лучшую ИИ-систему?
— Усы, лапы и QR-код – вот мои документы. Заменит ли цифровой паспорт бумажный и чем это обернется для компаний?
— Как мы сделали свою ChatGPT Plus с голосовым вводом, чтением PDF, Youtube, и т.д
— Использование технологий машинного обучения в аудите: примеры эффективного применения
— 20 проектов по аналитике данных для новичков в 2023 году
— Кентавры и киборги: как консультанты BCG стали решать задачи на 25% быстрее с помощью ИИ
— От логики и риторики до теории множеств и матанализа. Полезные материалы по Data Science и машинному обучению
— Как мы в Just AI создавали и тестировали собственную LLM JustGPT — третью большую языковую модель в России
— Conquer MS-101: Dumpsarena Offers Reliable Study Materials
— How to Easily Try Out boto3 Interactively in AWS CloudShell
— Kafka Ease: Simplifying Kafka Topic and ACL Management
— A Python script to see my most watched YouTube videos
— No One Expects the self._spanish_inquisition (Because it’s protected)
— My Experience learning Python and SQL
— Lovely Silk
— My first contribution to other open source project
— Data Science Essentials: Your Path to Effective Dataframe Joins with Pandas
— Customizing RAG Pipelines to Summarize Latest Hacker News Posts with Haystack 2.0 Preview
Посмотреть:
🌐 Языки программирования, чей исходный код похож на что-то другое #программирование (⏱ 00:42)
🌐 Python Matplotlib. Визуализация данных на PRO уровне. (⏱ 24:43)
🌐 Устраиваемся на работу. Решаем тестовое задание на позицию Python Junior. (⏱ 20:28)
🌐 Уроки Golang с нуля /#29 - Дженерики/обобщения (⏱ 10:52)
🌐 Уроки Golang с нуля /#30 - Горутины (⏱ 08:09)
🌐 Lightning Interview "Risk and Reward: Unraveling Machine Learning for High-Risk Applications" (⏱ 52:37)
🌐 Framework and Lessons Learned from Building a Generative AI Application - Jason Tan (⏱ 24:08)
🌐 Generative AI for Biomedical Insights: Solutions through OpenBIOML and BIO GP - Bidyut Sarkar (⏱ 30:40)
🌐 Как защитить телеграм бота от атак и перегрузок.
Хорошего дня!
@data_analysis_ml
Почитать:
— Обслуживание моделей PyTorch с помощью TorchServe
— Нейростроительное MVP или Почему иногда стоит возрождать проекты
— Microsoft предлагает БЕСПЛАТНЫЕ онлайн курсы с сертификацией
— 7 шагов по контейнеризации Python-приложений
— MySQL в Google Colab: Бесшовная интеграция
— Как выбрать лучшую ИИ-систему?
— Усы, лапы и QR-код – вот мои документы. Заменит ли цифровой паспорт бумажный и чем это обернется для компаний?
— Как мы сделали свою ChatGPT Plus с голосовым вводом, чтением PDF, Youtube, и т.д
— Использование технологий машинного обучения в аудите: примеры эффективного применения
— 20 проектов по аналитике данных для новичков в 2023 году
— Кентавры и киборги: как консультанты BCG стали решать задачи на 25% быстрее с помощью ИИ
— От логики и риторики до теории множеств и матанализа. Полезные материалы по Data Science и машинному обучению
— Как мы в Just AI создавали и тестировали собственную LLM JustGPT — третью большую языковую модель в России
— Conquer MS-101: Dumpsarena Offers Reliable Study Materials
— How to Easily Try Out boto3 Interactively in AWS CloudShell
— Kafka Ease: Simplifying Kafka Topic and ACL Management
— A Python script to see my most watched YouTube videos
— No One Expects the self._spanish_inquisition (Because it’s protected)
— My Experience learning Python and SQL
— Lovely Silk
— My first contribution to other open source project
— Data Science Essentials: Your Path to Effective Dataframe Joins with Pandas
— Customizing RAG Pipelines to Summarize Latest Hacker News Posts with Haystack 2.0 Preview
Посмотреть:
🌐 Языки программирования, чей исходный код похож на что-то другое #программирование (⏱ 00:42)
🌐 Python Matplotlib. Визуализация данных на PRO уровне. (⏱ 24:43)
🌐 Устраиваемся на работу. Решаем тестовое задание на позицию Python Junior. (⏱ 20:28)
🌐 Уроки Golang с нуля /#29 - Дженерики/обобщения (⏱ 10:52)
🌐 Уроки Golang с нуля /#30 - Горутины (⏱ 08:09)
🌐 Lightning Interview "Risk and Reward: Unraveling Machine Learning for High-Risk Applications" (⏱ 52:37)
🌐 Framework and Lessons Learned from Building a Generative AI Application - Jason Tan (⏱ 24:08)
🌐 Generative AI for Biomedical Insights: Solutions through OpenBIOML and BIO GP - Bidyut Sarkar (⏱ 30:40)
🌐 Как защитить телеграм бота от атак и перегрузок.
Хорошего дня!
@data_analysis_ml
❤11🔥3👍1🥰1
👨🎓 Бесплатный курс от University of London: Foundations of Data Science: K-Means Clustering in Python
Вы рассмотрите фундаментальные понятия науки о данных на примере задачи кластеризации данных и на практике освоите базовые навыки программирования.
В ходе курса необходимо выполнить ряд упражнений по математике и программированию, а также небольшой проект по кластеризации данных для заданного набора данных.
📌Курс
🔥Наберем 50 бустов и мы выложим список из 25 бесплатных курсов по NLP и 25 курсов по математике для Дата сайентиста.
@data_analysis_ml
Вы рассмотрите фундаментальные понятия науки о данных на примере задачи кластеризации данных и на практике освоите базовые навыки программирования.
В ходе курса необходимо выполнить ряд упражнений по математике и программированию, а также небольшой проект по кластеризации данных для заданного набора данных.
📌Курс
🔥Наберем 50 бустов и мы выложим список из 25 бесплатных курсов по NLP и 25 курсов по математике для Дата сайентиста.
@data_analysis_ml
🔥96👍6❤2
👨🎓 Бесплатный курс : Python and Statistics for Financial Analysis
Python и статистика для финансового анализа.
К концу курса вы сможете решать следующие задачи с использованием языка python:
• Импортировать, предварительно обрабатывать, сохранять и визуализировать финансовые данные в pandas Dataframe
• Манипулировать финансовыми данными
• Применять важные статистические функции (частота, распределение, популяция и выборка, доверительный интервал, линейная регрессия и др. ) в финансовых задачах.
• Строить торговые модели с использованием
• Оценивать эффективность торговых стратегий с помощью различных инвестиционных индикаторов
В платформе курса настроена среда Jupyter Notebook, позволяющая практиковаться в коде на python без установки каких-либо приложений.
📌 Курс
@data_analysis_ml
Python и статистика для финансового анализа.
К концу курса вы сможете решать следующие задачи с использованием языка python:
• Импортировать, предварительно обрабатывать, сохранять и визуализировать финансовые данные в pandas Dataframe
• Манипулировать финансовыми данными
• Применять важные статистические функции (частота, распределение, популяция и выборка, доверительный интервал, линейная регрессия и др. ) в финансовых задачах.
• Строить торговые модели с использованием
• Оценивать эффективность торговых стратегий с помощью различных инвестиционных индикаторов
В платформе курса настроена среда Jupyter Notebook, позволяющая практиковаться в коде на python без установки каких-либо приложений.
📌 Курс
@data_analysis_ml
👍19🔥5❤2
🎓🏆 Вышли новые лекции бесплатного курса: Stanford CS224N: Natural Language Processing with Deep Learning
Курс Stanford NLP является, пожалуй, одним из лучших курсов по Deep NLP в Интернете. Сейчас в открытом доступе находятся новые лекции 2023 года.
Курс охватывает фундаментальные методы и темы, связанные с глубоким обучением, применяемым в NLP.
От архитектур (RNNs, LSTMs, трансформров), предварительного обучения, генерации NLP кода, до новых тем, таких как промпи-инжиниринг, RLHF, мультимодальные агенты и многое другое.
• Лекции
• Курс
@data_analysis_ml
Курс Stanford NLP является, пожалуй, одним из лучших курсов по Deep NLP в Интернете. Сейчас в открытом доступе находятся новые лекции 2023 года.
Курс охватывает фундаментальные методы и темы, связанные с глубоким обучением, применяемым в NLP.
От архитектур (RNNs, LSTMs, трансформров), предварительного обучения, генерации NLP кода, до новых тем, таких как промпи-инжиниринг, RLHF, мультимодальные агенты и многое другое.
• Лекции
• Курс
@data_analysis_ml
❤19🔥9👍3
This media is not supported in your browser
VIEW IN TELEGRAM
Если вы хотите использовать drag-and-drop UI для создания своего LLM потока, попробуйте Flowise.
UI с открытым исходным кодом для построения LLM модели с использованием
LangchainJS
, написанный на Node Typescript/Javascript
git clone https://github.com/FlowiseAI/Flowise.git
• Github
• Примеры
@data_analysis_ml
Please open Telegram to view this post
VIEW IN TELEGRAM
👍8🔥5❤3
На практике в машинном обучении, особенно при работе с нейронными сетями, часто сталкиваются с проблемой нехватки данных для обучения модели или получения стабильных результатов.
Мы оказались в подобной ситуации, решая задачу компьютерного зрения связанную с анализом нарушений в помещениях закрытого типа. Недостаточно изображений для качественной модели, а аугментация и спарсить изображения из Интернета невозможно.
Поэтому нам понадобился синтетический датасет, состоящий из похожих на имеющиеся изображений. Мы решили использовать модель DiT (Diffusion Transformer) от Facebook Research. DiT обучалась на ImageNet и имеет 4 модели разных размеров.
Таблица размерностей DiT моделей в изображении.
📌Читать статью
@data_analysis_ml
Please open Telegram to view this post
VIEW IN TELEGRAM
👍8❤3🔥2
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍23🔥8❤6💔1
1. Vega-Lite: https://github.com/vega/vega-lite
2. RawGraphs: https://github.com/rawgraphs/raw
3. Superset: https://github.com/apache/superset
4. Metabase: https://github.com/metabase/metabase
5. Visidata: https://github.com/saulpw/visidata
6. Chart.js: https://github.com/chartjs/Chart.js
7. C3.js: https://github.com/c3js/c3
@data_analysis_ml
Please open Telegram to view this post
VIEW IN TELEGRAM
👍16❤4🔥4🥱2
💫 Создай, оформи, опубликуй. Sphinx — незаменимый помощник в мире Python документации
Sphinx — это профессиональный инструмент для создания обширной и качественной документации. Он изначально был создан для написания документации к языку Python, но со временем стал популярным выбором среди разработчиков различных языков программирования.
Sphinx использует простой в разметке текстовый формат reStructuredText (reST) для создания документации, и способен компилировать эту разметку в различные форматы, такие как HTML, PDF, ePub, Texinfo, и другие.
С помощью Sphinx, мы можем создавать структурированную и красиво оформленную документацию, которая может включать в себя автоматически генерируемые разделы.
Где используется Sphinx?
▪️Для документации ваших собственных проектов
• Sphinx является превосходным инструментом для документирования любого проекта, будь то небольшой проект с открытым исходным кодом или крупномасштабное корпоративное приложение. Благодаря его гибкости и функциональности, Sphinx обеспечивает все необходимые инструменты для создания качественной, структурированной и доступной документации. Кроме того, Sphinx обеспечивает поддержку международной локализации, что позволяет создавать документацию на разных языках. Расширяемость Sphinx через модули также позволяет адаптировать процесс создания документации под конкретные потребности проекта. Все эти функции делают Sphinx отличным выбором для документации вашего проекта, независимо от его масштаба и сложности.
▪️Python Documentation
• Как уже было сказано выше, Sphinx первоначально был создан для документирования самого языка Python, и по‑прежнему используется на официальном сайте Python для предоставления документации по языку и стандартным библиотекам.
▪️Read the Docs
• Это популярная платформа для хостинга документации, которая тесно интегрирована с Sphinx. Она позволяет автоматически собирать и публиковать документацию из репозиториев на GitHub, GitLab и других сервисах. Read the Docs поддерживает формат reStructuredText и предоставляет множество дополнительных функций для улучшения качества документации.
Проекты с открытым исходным кодом, корпоративные и научные проекты.
Множество проектов с открытым исходным кодом используют Sphinx для создания их документации. Некоторые из них включают:
• Django
• Это высокоуровневый веб‑фреймворк Python, который следует принципу «Не изобретай велосипед». Документация Django, известная своим высоким качеством и полнотой, написана с использованием Sphinx. Это включает подробные справочные материалы, руководства по разработке, и руководства по API. Использование Sphinx в таком масштабном и влиятельном проекте, как Django, является отличным подтверждением его надежности и эффективности.
• The Linux Kernel
• Sphinx используется для документирования ядра Linux, одного из самых значимых и сложных проектов с открытым исходным кодом в мире.
• TensorFlow
• Платформа от Google для машинного обучения. Документация TensorFlow, которая включает в себя описания API, руководства и учебные материалы, создана с использованием Sphinx.
• Pandas
• Библиотека Python для обработки и анализа данных, которая использует Sphinx для создания своей обширной документации, включающей справочные материалы, руководства и учебные пособия.
• NumPy
• Библиотека для научных вычислений на Python, которая широко использует Sphinx для создания своей документации. Это подтверждает статус Sphinx как стандартного инструмента для документации в научной и академической среде Python.
Инициализация Sphinx в нашем проекте
Где скачать Sphinx?
Sphinx – это программное обеспечение с открытым исходным кодом, и его можно легко установить с помощью пакетного менеджера Python — pip. Для установки Sphinx, выполним следующую команду в терминале:
Также можно посетить официальный сайт Sphinx для получения дополнительной информации.
После того, как мы установили Sphinx, мы можем начать использовать его для создания документации.
Рассмотрим, как инициализировать Sphinx в нашем проекте.
Читать дальше
@data_analysis_ml
Sphinx — это профессиональный инструмент для создания обширной и качественной документации. Он изначально был создан для написания документации к языку Python, но со временем стал популярным выбором среди разработчиков различных языков программирования.
Sphinx использует простой в разметке текстовый формат reStructuredText (reST) для создания документации, и способен компилировать эту разметку в различные форматы, такие как HTML, PDF, ePub, Texinfo, и другие.
С помощью Sphinx, мы можем создавать структурированную и красиво оформленную документацию, которая может включать в себя автоматически генерируемые разделы.
Где используется Sphinx?
▪️Для документации ваших собственных проектов
• Sphinx является превосходным инструментом для документирования любого проекта, будь то небольшой проект с открытым исходным кодом или крупномасштабное корпоративное приложение. Благодаря его гибкости и функциональности, Sphinx обеспечивает все необходимые инструменты для создания качественной, структурированной и доступной документации. Кроме того, Sphinx обеспечивает поддержку международной локализации, что позволяет создавать документацию на разных языках. Расширяемость Sphinx через модули также позволяет адаптировать процесс создания документации под конкретные потребности проекта. Все эти функции делают Sphinx отличным выбором для документации вашего проекта, независимо от его масштаба и сложности.
▪️Python Documentation
• Как уже было сказано выше, Sphinx первоначально был создан для документирования самого языка Python, и по‑прежнему используется на официальном сайте Python для предоставления документации по языку и стандартным библиотекам.
▪️Read the Docs
• Это популярная платформа для хостинга документации, которая тесно интегрирована с Sphinx. Она позволяет автоматически собирать и публиковать документацию из репозиториев на GitHub, GitLab и других сервисах. Read the Docs поддерживает формат reStructuredText и предоставляет множество дополнительных функций для улучшения качества документации.
Проекты с открытым исходным кодом, корпоративные и научные проекты.
Множество проектов с открытым исходным кодом используют Sphinx для создания их документации. Некоторые из них включают:
• Django
• Это высокоуровневый веб‑фреймворк Python, который следует принципу «Не изобретай велосипед». Документация Django, известная своим высоким качеством и полнотой, написана с использованием Sphinx. Это включает подробные справочные материалы, руководства по разработке, и руководства по API. Использование Sphinx в таком масштабном и влиятельном проекте, как Django, является отличным подтверждением его надежности и эффективности.
• The Linux Kernel
• Sphinx используется для документирования ядра Linux, одного из самых значимых и сложных проектов с открытым исходным кодом в мире.
• TensorFlow
• Платформа от Google для машинного обучения. Документация TensorFlow, которая включает в себя описания API, руководства и учебные материалы, создана с использованием Sphinx.
• Pandas
• Библиотека Python для обработки и анализа данных, которая использует Sphinx для создания своей обширной документации, включающей справочные материалы, руководства и учебные пособия.
• NumPy
• Библиотека для научных вычислений на Python, которая широко использует Sphinx для создания своей документации. Это подтверждает статус Sphinx как стандартного инструмента для документации в научной и академической среде Python.
Инициализация Sphinx в нашем проекте
Где скачать Sphinx?
Sphinx – это программное обеспечение с открытым исходным кодом, и его можно легко установить с помощью пакетного менеджера Python — pip. Для установки Sphinx, выполним следующую команду в терминале:
$ pip install Sphinx
Также можно посетить официальный сайт Sphinx для получения дополнительной информации.
После того, как мы установили Sphinx, мы можем начать использовать его для создания документации.
Рассмотрим, как инициализировать Sphinx в нашем проекте.
Читать дальше
@data_analysis_ml
❤10👍6🔥3
This media is not supported in your browser
VIEW IN TELEGRAM
Примеры с кодом и интерактивные визуализации мл моделей.
•Вероятностные модели
Код | Демо
Код | Демо
• TensorFlow neural network playground
Код | Демо
• Convolutional neural networks
Код | Демо
Код | Демо
Демо
• Unsupervised learning and preprocessing
K-means clustering
@data_analysis_ml
Please open Telegram to view this post
VIEW IN TELEGRAM
👍13🔥6❤4