Анализ данных (Data analysis)
46.3K subscribers
2.31K photos
264 videos
1 file
2.04K links
Data science, наука о данных.

@haarrp - админ

@itchannels_telegram - 🔥 главное в ит

@ai_machinelearning_big_data - ML

@machinelearning_interview - вопросы с собесдований по Ml

РКН: clck.ru/3FmyAp
Download Telegram
Forwarded from Machinelearning
⚡️ Evo-2: модель для генерации генома, которая знает все древо жизни.

NVIDIA в соавторстве с Arc Institute опубликовали Evo-2, самую большую ИИ-модель для биологии, обученную на 9,3 трлн. пар ДНК из геномного атласа всех форм жизни.

Можно считать, что это LLM, ориентированная на ДНК. Вместо текста Evo 2 генерирует геномные последовательности, читает и интерпретирует сложную ДНК, включая некодирующие регионы, которые обычно считаются неинформативными, генерирует целые хромосомы, новые геномы и предсказывает мутации, вызывающие заболевания, даже те, которые еще не изучены.

Тем самым, можно утверждать, что ИИ переходит от описания биологии к ее проектированию. Это позволяет создавать синтетическую жизнь с нуля, программируемые белковые последовательности, потенциальные новые генные терапии и закладывает основу для моделирования целых клеток. Evo 2 делает биологию вычислительной дисциплиной.

Evo-2 использует StripedHyena 2 - многогибридную модель, сочетающую различные типы операторов для баланса между качеством модели, эффективностью обучения и инференса. StripedHyena 2 опирается на комбинацию из 3 вариантов сверточных операторов, зависящих от входных данных, и механизма внимания. Она моделирует ДНК в нескольких масштабах, улавливая даже слабые взаимодействия, и автономно обучается таким характеристикам, как границы экзонов и интронов, сайты связывания транскрипционных факторов, без участия человека.

Модель была обучена в два этапа (претрейн с контекстом 8192 и последующее обучение с увеличенным до 1 млн.) на датасете из 9,3 триллиона пар оснований бактерий, архей, эукариот и бактериофагов. Evo 2 обрабатывает до 1 млн. пар оснований в одном контекстном окне, умеет "держать в уме" целые хромосомы и может выявлять эволюционные закономерности, ранее не замеченные человеком.

Evo-2 была протестирована на практических возможности генерации, создав синтетические дрожжевые хромосомы, митохондриальные геномы и минимальные бактериальные секвенции и продемонстрировала высокую производительность в задачах, связанных с вариациями генов, включая некодирующие и сплайсинговые варианты

Проект полностью открыт: веса моделей, код и набор данных OpenGenome 2. Представлены два вида моделей:

🟢Evo 2 - 7B и 40B, обученные последовательности длиной до 1 млн;
🟠Evo 2 Base - 1B, 7B и 40B, обученные последовательности длиной 8192.


📌Лицензирование: Apache 2.0 License.


🟡Набор моделей
🟡Техотчет
🟡Датасет
🟡Demo
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #Evo2 #NVIDIA
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥165👍5🤔2
⚡️ SigLIP2 – это семейство визуально-языковых энкодеров, разработанных для улучшенного семантического понимания, точного локализования объектов и извлечения плотных (dense) признаков из изображений .

В основе его концепции лежит возможность проводить классификацию изображений без дополнительного обучения на конкретных объектах – так называемая zero-shot классификация. Это позволяет применять модель к новым задачам и доменам, где может не быть размеченных данных.

Как работает инструмент?

- Патчевое представление изображений: Изображение разбивается на небольшие участки (патчи), которые затем обрабатываются энкодером. Это позволяет модели эффективно извлекать пространственные признаки даже при изменении разрешения.

- Совмещение текстовых и визуальных признаков: Модель обучена сопоставлять описания на естественном языке с визуальными объектами. Такой подход даёт возможность «понимания» изображения через текстовые описания, что особенно полезно в zero-shot сценариях.

- Мульти-языковая поддержка: Благодаря обучению на данных на разных языках, SigLIP2 демонстрирует высокую эффективность в задачах, где требуется понимание многоязычных текстовых описаний.

- Различные архитектурные варианты: Коллекция включает модели с различными размерами патчей (например, patch16 или patch32) и оптимизированными архитектурами (например, с динамическим разрешением или с использованием shape-optimized So-400m backbones).

Это позволяет подобрать оптимальный вариант для конкретной задачи .

За счёт плотного представления признаков, модель способна не только определять, что изображено на картинке, но и точно локализовать объекты внутри изображения.

Примеры применения
Системы безопасности и наблюдения: Автоматическая идентификация и локализация объектов в реальном времени.
Мультимодальные поисковые системы: Улучшение результатов поиска за счёт объединения визуальных и текстовых данных.
Мобильные приложения и AR: Интеграция возможностей классификации изображений без необходимости обучения модели на каждом устройстве.

SigLIP2 – это мощный инструмент, который демонстрирует значительный прогресс в области визуально-языкового анализа. Его способность работать в режиме нулевого обучения, мульти-языковая поддержка и высокая точность извлечения признаков открывают новые горизонты для разработчиков и исследователей в области компьютерного зрения. Если вы ищете решение для задач, где требуется быстрая адаптация модели к новым данным и языкам, SigLIP2 может стать отличным выбором.

https://huggingface.co/collections/google/siglip2-67b5dcef38c175486e240107

@data_analysis_ml
12👍6🔥2
This media is not supported in your browser
VIEW IN TELEGRAM
🎆 20-секундный урок по созданию приложений с помощью Grok 3 и развертыванию на Hugging Face

пример, показывающий приложение Gradio
13🔥9👍4😱21
Forwarded from Machinelearning
🌟 Генерация изображений байесовскими методами.

Исследователи из Мюнхенского университета предложили методику генерации изображений, основанную на байесовском выводе. Экспериментальная модель, которая получила название Bayesian Sample Inference (BSI), имитирует процесс постепенного уточнения данных: ее инференс начинается с «размытого» представления об изображении и последовательно корректируется с использованием шумовых измерений до финального результата. По заверениям авторов, их метод позволяет точнее воспроизводить распределение данных, чем классические решения на основе диффузии.

BSI-модель стартует с априорного распределения, где начальная точность намеренно задаётся низкой — это эквивалентно «размытой картинке», покрывающей всё множество возможных изображений. На каждом шаге генерации, предиктор, построенный на U-Net или ViT, анализирует текущий промежуточный «результат» и генерирует оценку соответствия относительно "идеального" изображения, который, в свою очередь, участвует в пересчете среднего значения и точности для следующего шага генерации.

Такой подход позволяет BSI-модели балансировать между имеющимися знаниями и новыми данными, избегая переобучения и сохраняя разнообразие генерации. Эксперименты выявили, что BSI сохраняет разнообразие сгенерированных образцов даже при малом числе шагов — это выгодно отличает её от аналогов, склонных к «повторяющимся» генерациям.

BSI напрямую сравнивали с диффузионными VDM- и EDM-моделями и BFNs. Оказалось, что BSI-архитектура не только включает BFNs как частный случай, но и превосходит их в тестах на правдоподобие. Например, на наборах CIFAR10 и ImageNet BSI показала лучшие результаты, достигнув 2.64 (BFNs) и 3.22 (VDM) бит на измерение соответственно, но не смогла превзойти модели с точным расчетом правдоподобия (i-DODE).

▶️ Практическая реализация метода доступна в репозитории проекта на Github, где представлены инструменты для инференса, обучения и файнтюнинга.


📌Лицензирование: MIT License.


🟡Arxiv
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #Bayesian #GenAI
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍104🔥1🤣1
🪐 The cosmic distance ladder with Terence Tao, part 2

На канале 3Blue1Brown вышло новое видео.

Видео посвящено объяснению концепции Шкала расстояний в астрономии, которая используется в астрономии для определения расстояний до планет, звёзд и далеких галактик. Основные моменты видео:

Фундаментальные принципы: Рассматриваются основные принципы, лежащие в основе определения расстояния в космосе, включая использование параллакса, переменных звезд и других космологических стандартов.

Примеры и иллюстрации: Лекция сопровождается практическими примерами и визуальными иллюстрациями, чтобы наглядно показать, как именно измеряются расстояния в астрономии.

Вклад Terence Tao: Как второй выпуск цикла, видео, вероятно, развивает и углубляет темы, начатые в первой части, уделяя внимание математическим и физическим аспектам измерений, что делает их понятными даже для аудитории без специализированного образования.
Таким образом, видео является образовательной лекцией, которая помогает понять, как современные методы астрономии позволяют определять огромные расстояния во Вселенной.

Видео
1 часть

@data_analysis_ml
👍105🔥2🤣2
✔️ Qwen тизерят свой новый продукт, который они обещают выпустить сегодня

Еле они написали, что теперь домен https://qwen.ai принадлежит их команде, а сервис Qwen chat теперь доступен по адресу https://chat.qwen.ai.

@data_analysis_ml
Please open Telegram to view this post
VIEW IN TELEGRAM
👍108🔥3
🔥 MetaGPT — это фреймворк, который преобразует простое текстовое описание задачи в полный пакет проектной документации и кода!

🌟 Он моделирует работу IT-компании, назначая различные роли, такие как менеджер продукта, менеджер проекта, инженер и другие, каждому из которых соответствует агент на основе большой языковой модели. Эти агенты взаимодействуют друг с другом, следуя стандартизированным операционным процедурам (SOP), что позволяет эффективно разрабатывать сложные программные продукты.

🔐 Лицензия: MIT

🖥 Github

@data_analysis_ml
Please open Telegram to view this post
VIEW IN TELEGRAM
👍149🔥51
🚀 Flashmla от deepeseek

DeepSeek представил MLA – революционное ускорение инференса LLM
DeepSeek выпустил свою реализацию MLA (Multi-head Latent Attention), которая значительно ускоряет работу больших языковых моделей (LLM) и существенно снижает требования к памяти. Вот как это работает:

Что такое MLA?
MLA – это инновационный механизм внимания, который использует технику «low-rank joint compression» для сжатия матриц «ключей» (K) и «значений» (V). Благодаря этому подходу достигается:

Снижение использования памяти до 93.3%: сжатие позволяет уменьшить объем данных, которые нужно хранить для каждого слоя внимания.
Увеличение пропускной способности до 5.76 раз: особенно заметно на длинных контекстах, где традиционные методы сталкиваются с проблемами масштабирования.
Основные принципы работы MLA
MLA впервые был представлен в публикации DeepSeek AI V2, где также описывалась их архитектура Mixture-of-Experts. Ключевые этапы работы метода «low-rank joint compression» MLA включают:

1️⃣ Проекция в латентное пространство:
Вместо хранения полных матриц K и V для каждой «головы» внимания, они проецируются в общее, низкоразмерное латентное пространство. Это позволяет существенно сократить объем необходимых данных.

2️⃣ Обучаемые латентные векторы:
MLA вводит набор обучаемых латентных векторов, число которых значительно меньше, чем размеры исходных матриц K и V. Эти векторы служат своего рода «ядром», которое хранит сжатую информацию.

3️⃣ Нелинейная проекция:
Ключи и значения проецируются в латентное пространство с использованием нелинейной функции, которая обучается вместе с моделью. Это позволяет адаптивно подбирать оптимальное сжатие в зависимости от задачи.

4️⃣ Восстановление «по требованию»:
При вычислении коэффициентов внимания происходит динамическое восстановление приближенных матриц K и V из сохраненных латентных векторов. Важно, что восстановление выполняется «по требованию», только для необходимых токенов, что экономит вычислительные ресурсы.

Техническая поддержка и оптимизация
DeepSeek также представил open-source CUDA ядра, оптимизированные для NVIDIA Hopper GPUs, что обеспечивает высокую производительность MLA на современном оборудовании. Ознакомиться с кодом и начать использовать оптимизированные ядра можно по ссылке: FlashMLA на GitHub.

https://github.com/deepseek-ai/FlashMLA

@data_analysis_ml
9👍4🔥2🤣2🥰1
✔️ Подтвержден выпуск Claude 3.7 Sonnet

AWS Badrock готовятся разместить новую версию Sonnet 3.7, которая, скорее всего, будет анонсирована сегодня во время мероприятия Amazon.

* Модель в настоящее время скрыта и не отображается в пользовательском интерфейсе

Инсайдеры раскопали, что модель достигает SOTA в кодинге, агентных способностях, сложном рассуждении и генерации контента.

Благодаря высокой производительности и контролю над скоростью работы, Claude 3.7 Sonnet заточена для реализации AI-агентов и комплексных AI-решений.

Источник: https://archive.is/BkvLb

@data_analysis_ml - подпистаться
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥13👍105
🔥 PIKE-RAG (sPecIalized KnowledgE and Rationale Augmented Generation) — это метод, разработанный для улучшения возможностей больших языковых моделей в извлечении, понимании и применении специализированных знаний!

🌟 Он направлен на построение последовательной логики рассуждений, что позволяет LLM постепенно приходить к точным ответам, особенно в сложных промышленных приложениях.

🔐 Лицензия: MIT

🖥 Github

@data_analysis_ml
Please open Telegram to view this post
VIEW IN TELEGRAM
11👍7🥰1
🔥 Memobase — это система памяти, ориентированная на профили пользователей, разработанная для интеграции долговременной памяти в генеративные AI-приложения!

🌟 Она позволяет виртуальным компаньонам, образовательным инструментам и персональным ассистентам запоминать, понимать и адаптироваться к своим пользователям.

🔐 Лицензия: Apache-2.0

🖥 Github

@data_analysis_ml
Please open Telegram to view this post
VIEW IN TELEGRAM
👍86🥰2
⚡️ DeepSeek-R1-FP4 от NVIDIA привлекает внимание тем, что сочетает в себе передовые идеи для быстрого и эффективного поиска по мультимедийному контенту.

Главное, что здесь сделано по-новому — это применение 4-битной точности (FP4) для представления данных.

Такая оптимизация позволяет существенно снизить затраты памяти и ускорить вычислительный процесс, что особенно важно при работе с огромными массивами изображений или видео.

Суть подхода в том, что система сначала «вчитывается» в контент, извлекая из него ключевые признаки, а затем преобразует их в компактные векторные представления.

Эти векторы отражают глубокую семантику, а не просто поверхностные характеристики, поэтому поиск становится более осмысленным. При запросе система сравнивает вектор, соответствующий запросу, с уже сохранёнными представлениями, находя наиболее похожие и релевантные результаты.

Такой метод особенно интересен для приложений, где необходимо работать с мультимодальными данными — будь то поиск похожих сцен в видеоархивах или сопоставление изображений с текстовыми описаниями. Оптимизация под современные аппаратные решения от NVIDIA делает эту модель подходящей для интеграции в реальные системы, где скорость и эффективность поиска играют ключевую роль.

В общем, DeepSeek-R1-FP4 — это пример того, как современные технологии позволяют не только повысить качество поиска, но и сделать его более доступным с точки зрения вычислительных ресурсов.

huggingface.co/nvidia/DeepSeek-R1-FP4
10👍5🔥2🐳2
🔥 Это — подробное руководство по созданию и пониманию AI-агентов — автономных систем, которые могут анализировать информацию, принимать решения и выполнять задачи!

🔗 Ссылка: *клик*

@data_analysis_ml
Please open Telegram to view this post
VIEW IN TELEGRAM
👍146🔥2
✔️ Hume AI открыла доступ к Octave: ТTS-модель, которая умеет говорить с эмоциями.

Octave, TTS-модель, анонсированная в конце декабря 2024 года, стала доступной через web и API. Модель умеет не просто "читать" слова, а понимает их смысл в контексте. Octave способна отыгрывать персонажей, генерировать голоса по запросу и изменять эмоциональную окраску и стиль речи.

Благодаря функции Voice Design, Octave может создать любой ИИ-голос по текстовому описанию. От "терпеливого, чуткого консультанта с голосом ASMR" до "средневекового рыцаря" – Octave воплотит любую фантазию. В ближайшем будущем планируется запуск функции клонирования голоса.

В ходе слепого сравнительного исследования, Octave превзошла систему ElevenLabs Voice Design по качеству звука (71,6%), естественности (51,7%) и соответствию голоса заданному описанию (57,7%).
hume.ai

@data_analysis_ml
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍87🔥1
Media is too big
VIEW IN TELEGRAM
🤖 Еще один день, еще один (китайский) гуманоидный робот: сегодня STAR1 демонстрирует возможности своего робота в задачах готовки.

При такой скорости развития.год роботы будут в наших домах в ближайшее время.
Please open Telegram to view this post
VIEW IN TELEGRAM
10👍4🔥1😁1
📖 В этой статье обсуждается улучшение оценки глубины сцены по одиночному изображению (monocular depth estimation, MDE) с использованием методов дистилляции знаний!

💡 Авторы анализируют различные стратегии нормализации глубины при дистилляции псевдометрических меток и выявляют, что глобальная нормализация может усиливать шум в псевдометрических метках, снижая эффективность дистилляции. В ответ на это они предлагают метод Cross-Context Distillation, объединяющий глобальные и локальные признаки для улучшения качества псевдометрических меток, а также многопедагогическую дистилляцию, использующую преимущества различных моделей оценки глубины. Эксперименты на эталонных наборах данных демонстрируют, что предложенный подход значительно превосходит современные методы как количественно, так и качественно.

🔗 Ссылка: *клик*

@data_analysis_ml
Please open Telegram to view this post
VIEW IN TELEGRAM
12👍6🔥4