Анализ данных (Data analysis)
46.3K subscribers
2.31K photos
264 videos
1 file
2.04K links
Data science, наука о данных.

@haarrp - админ

@itchannels_telegram - 🔥 главное в ит

@ai_machinelearning_big_data - ML

@machinelearning_interview - вопросы с собесдований по Ml

РКН: clck.ru/3FmyAp
Download Telegram
🌟 ZenML — фреймворк для упрощения и стандартизации MLOps процессов

pip install "zenml[server]" notebook

ZenML упрощает перенос ML-пайплайнов из ноутбуков в продакшн-среду.
Обеспечивает гарантированную воспроизводимость экспериментов за счет версионирования данных, кода и моделей.

ZenML также позволяет быстро переключаться между локальной и облачной средой, предоставляет готовые инструменты для сравнения и визуализации параметров и результатов, кеширования состояний конвейера для быстрых итераций и многое другое.

🖥 GitHub
🟡 Google Colab

@data_analysis_ml
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍74🔥2
Forwarded from Machinelearning
⚡️ Llama-3.1: Обновление семейства моделей

Llama 3.1 - набор предварительно обученных и настроенных по инструкции генеративных моделей размером 8B, 70B и 405B (текст в тексте/текст на выходе). Модели Llama 3.1 с инструкциями (8B, 70B, 405B) оптимизированы для использования в многоязычных диалогах и превосходят многие из доступных моделей с открытым исходным кодом и закрытых моделей для чатов в распространенных отраслевых тестах.

Llama 3.1 - это авторегрессивная языковая модель, использующая оптимизированную архитектуру трансформаторов. В настроенных версиях используются контролируемая тонкая настройка (SFT) и обучение с подкреплением и обратной связью (RLHF) для согласования с предпочтениями человека в отношении полезности и безопасности.

▶️Доступные для скачивания модели LLaMa 3.1( полный список)

Pretrained:
Meta-Llama-3.1-8B
Meta-Llama-3.1-70B
Meta-Llama-3.1-405B
Meta-Llama-3.1-405B-MP16
Meta-Llama-3.1-405B-FP8

Fine-tuned:
Meta-Llama-3.1-8B-Instruct
Meta-Llama-3.1-70B-Instruct
Meta-Llama-3.1-405B-Instruct
Meta-Llama-3.1-405B-Instruct-MP16
Meta-Llama-3.1-405B-Instruct-FP8
Llama-Guard-3-8B
Llama-Guard-3-8B-INT8
Llama-Guard-2-8B
Llama-Guard-8B
Prompt-Guard-86M



▶️ Комментарии к версии 405B:

🟢MP16 (Model Parallel 16) - полная версия весов BF16.
Эти веса можно запустить только на нескольких нодах с использованием pipelined parallel инференса. Минимально требуется 2 ноды с 8 GPU.

🟢MP8 - полная версия весов BF16, но может быть развернута на одной ноде с 8 GPU с использованием динамического квантования FP8 (Floating Point 8).

🟢FP8 (Floating Point 8) - квантованная версия весов. Эти веса можно запустить на одной ноде с 8 GPU и с использованием статического квантования FP.

📌 Модель 405B требует примерно 750 ГБ и минимум двух нод (по 8 GPU) для инференса в MP16.

📌Загрузить модели можно с сайта Meta.Ai или с официальное репозитория на Huggingface Для скачивания нужно заполнить форму запроса доступа.


🟠UPD: Первая GGUF-версия на HF в Q8 уже появилась.


@ai_machinelearning_big_data

#AI #Llama3.1 #ML #LLM
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥84👍4
🌟 SlowFast-LLaVA — метод повышения точности работы VLLM от Apple

Apple представляет SlowFast-LLaVA — метод, который позволяет добиться сравнимой или более высокой производительности по сравнению с видеомоделями SotA.

Эксперименты показывают, что SF-LLaVA превосходит существующие необучаемые методы на широком спектре задач, связанных с видео. В некоторых бенчмарках она достигает сравнимой или даже лучшей производительности по сравнению с современными VLLM, которые точно настраиваются на наборах видеоданных.

🟡 Arxiv

@data_analysis_ml
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥74👍3
🌟 Optax — библиотека Python для более удобной работы с JAX

pip install optax

Optax — это библиотека от DeepMind, созданная для облегчения ML-экспериментов с JAX;
Optax предоставляет множество элементов, из которых можно собирать ML-приложения.

В частности, Optax содержит реализации многих оптимизаторов (таких как Adam) и функций потерь.

🖥 GitHub
🟡 Доки
🟡 Notebook

@data_analysis_ml
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍75🔥4
🌟 Dive into Deep Learning — свободная книга от исследователей Amazon: Zhang, Li и других

Мощная книга, которая на 1108 страницах подробно описывает реализацию алгоритмов ML и Deep Learning с помощью PyTorch, NumPy/MXNet, JAX и TensorFlow.

По этой книге читаются лекции в 500 университетах 70 стран.

🟡 Dive into Deep Learning
🟡 PDF
🖥 GitHub с кодом к книге

@data_analysis_ml
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
110👍7🔥4❤‍🔥1
🌟 Ax — построение LLM-агентов на базе исследования Стэнфорда — DSP (demonstrate, search, predict)

npm install @ax-llm/ax

Ax позволяет несложно создавать интеллектуальных агентов, реализовывать бесшовную интеграцию с несколькими LLM и VectorDB для создания конвейеров RAG или агентов, способных решать сложные задачи.

🖥 GitHub
🟡 Доки

@data_analysis_ml
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍83🔥2
⚡️ Prompt Guard 86M — модель для защиты LLM от эксплуатации в неэтичных целях

Prompt Guard — это модель классификатора, обученная на большом датасете из вредоносных промптов и джейлбреков;
Prompt Guard способна обнаруживать вредоносные промпты и попытки пользователя обойти защитные механизмы LLM.

Модель Prompt Guard полезна в качестве отправной точки для защиты LLM и приложений на их основе; для достижения максимальных результатов рекомендуется дополнительно тонко настроить Prompt Guard, исходя из своих рисков и пользователей LLM-приложения.

🤗 Hugging Face

@data_analysis_ml
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
11👍4🔥1🥱1
⚡️ Stability AI представляет Stable Video 4D — модель, которая позволяет генерировать разные ракурсы по загруженному видео

Stable Video 4D позволяет загружать 1 видео и получать видео с 8 новыми ракурсами.

🟡 Анонс Stable Video 4D
🟡 Статья

@data_analysis_ml
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥105👍3🤣1
🌟 Симуляция и рендеринг тканей в реальном времени

Симуляция и рендеринг тканей, особенно имеющих сложную структуру, в режиме реального времени довольно сложны и требуют больших затрат ресурсов. Исследование, представленное в рамках конференции SIGGRAPH 2024, было создано учеными из Шаньдунского и Нанкинского университетов в Китае с целью решить эту проблему при помощи нейросетей.

Плетеные ткани, как правило, имеют регулярно повторяющуюся структуру и рисунок. Существенное снижение нагрузки и уменьшение объема достигается за счёт автокодировщика – алгоритма, который кодирует паттерн этой структуры в латентный вектор с помощью энкодера, а затем расшифровывает декодером для получения реалистичного отображения.

Энкодер в нейронной сети отвечает за сжатие информации о форме объекта и его внешнем виде в латентный вектор. Для этого алгоритм сначала преобразует геометрическую структуру объекта и параметры его внешнего вида в числовые характеристики. Затем эти характеристики объединяются в один вектор через небольшую нейронную сеть, чтобы представить материал объекта в более компактном виде для дальнейшей обработки декодером.

Декодер же интерпретирует этот латентный вектор в изображение, сохраняя паттерн структуры и материал объекта.

Именно благодаря кодированию ткани в состояние латентного вектора нейросеть может отражать разные материалы, разделяя их, в отличие от некоторых других способов, требующих предварительного обучения под каждый тип материала.

Создатели представили ряд тестов, которые показали, что их инструмент способен в реальном времени рендерить ткани, а также редактировать параметры, такие как цвет, твёрдость, паттерн ткани и масштаб. В результате был достигнут баланс между качеством, скоростью и оптимальным использованием ресурсов компьютера.

🟡 Arxiv

@data_analysis_ml
Please open Telegram to view this post
VIEW IN TELEGRAM
8👍3🔥3🥰2