—
import Pkg; Pkg.add("Lux")
Lux бесшовно интегрируется с CUDA и AMDGPU, также поддерживается экспериментальная поддержка Metal Hardware.
Фреймворк используется по умолчанию во многих пакетов SciML, включая DiffEqFlux.jl, NeuralPDE.jl и другие.
Lux изначально поддерживает произвольные типы параметров, что делает его совместимым с другими пакетами Julia (и даже с пакетами, не относящимися к Julia).
@data_analysis_ml
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍7❤5🔥3
Всё остальное — просто для повышения эффективности и т.д.
Это код
engine.py
из проекта Micrograd. Micrograd – это небольшая реализация нейронной сети от Карпати, написанная на чистом Python без библиотек, в которой вычислительными единицами выступают не векторы и матрицы, а скалярные величины.
Micrograd представляет из себя комбинацию нескольких взаимодополняющих частей:
— небольшого построителя и оценивателя выражений на основе графа;
— автоматической дифференциации в обратном режиме для того же самого графа вычислений;
— строительных блоков нейронной сети для многослойного перцептрона
@data_analysis_ml
Please open Telegram to view this post
VIEW IN TELEGRAM
👍20❤8🔥8🤨3🤣2
—
pip install sf-hamilton
Чтобы создать граф при помощи Hamilton, ничего особенного не требуется: нужно просто писать обычные функции Python, которые указывают свои зависимости с помощью параметров.
Как раз по этим параметрам Hamilton и построит граф, по которому можно легко увидеть, как преобразуются данные и передаются из одной функции в другую
Hamilton может быть очень полезным инструментом при работе с большими конвейерами данных и в ML-системах
@data_analysis_ml
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍16❤7🔥4
⚡️Лучший способ получать свежие обновлении и следить за трендами в разработке на вашем языке. Находите свой стек и подписывайтесь:
C#: t.iss.one/csharp_ci
Машинное обучение: t.iss.one/ai_machinelearning_big_data
АНАЛИЗ Данных: t.iss.one/data_analysis_ml
Хакинг: t.iss.one/linuxkalii
Linux: t.iss.one/linuxacademiya
Базы данных: t.iss.one/sqlhub
C++ t.iss.one/cpluspluc
Golang: t.iss.one/Golang_google
Java: t.iss.one/javatg
React: t.iss.one/react_tg
Javascript: t.iss.one/javascriptv
Мобильная разработка: t.iss.one/mobdevelop
Docker: t.iss.one/+0WdB4uvOwCY0Mjdi
Python: t.iss.one/pythonl
Rust: t.iss.one/rust_code
PHP: t.iss.one/phpshka
Android: t.iss.one/android_its
Big Data: t.iss.one/bigdatai
Devops: t.iss.one/devOPSitsec
Собеседования МЛ: t.iss.one/machinelearning_interview
Python подготовка с собесу: t.iss.one/python_job_interview
МАТЕМАТИКА: t.iss.one/data_math
💼 Папка с вакансиями: t.iss.one/addlist/_zyy_jQ_QUsyM2Vi
Папка Go разработчика: t.iss.one/addlist/MUtJEeJSxeY2YTFi
Папка Python разработчика: t.iss.one/addlist/eEPya-HF6mkxMGIy
Папка ML: https://t.iss.one/addlist/2Ls-snqEeytkMDgy
C++ папка: https://t.iss.one/addlist/CdBs5DLepLJmZjY6
C# папка: https://t.iss.one/addlist/u15AMycxRMowZmRi
Java папка: https://t.iss.one/addlist/ZM3J6oFNAnRlNWU6
FRONTEND папка: https://t.iss.one/addlist/mzMMG3RPZhY2M2Iy
Linux папка: https://t.iss.one/addlist/w4Doot-XBG4xNzYy
😆ИТ-Мемы: t.iss.one/memes_prog
🇬🇧Английский: t.iss.one/english_forprogrammers
🧠ИИ: t.iss.one/vistehno
📕Ит-книги бесплатно: https://t.iss.one/addlist/BkskQciUW_FhNjEy
C#: t.iss.one/csharp_ci
Машинное обучение: t.iss.one/ai_machinelearning_big_data
АНАЛИЗ Данных: t.iss.one/data_analysis_ml
Хакинг: t.iss.one/linuxkalii
Linux: t.iss.one/linuxacademiya
Базы данных: t.iss.one/sqlhub
C++ t.iss.one/cpluspluc
Golang: t.iss.one/Golang_google
Java: t.iss.one/javatg
React: t.iss.one/react_tg
Javascript: t.iss.one/javascriptv
Мобильная разработка: t.iss.one/mobdevelop
Docker: t.iss.one/+0WdB4uvOwCY0Mjdi
Python: t.iss.one/pythonl
Rust: t.iss.one/rust_code
PHP: t.iss.one/phpshka
Android: t.iss.one/android_its
Big Data: t.iss.one/bigdatai
Devops: t.iss.one/devOPSitsec
Собеседования МЛ: t.iss.one/machinelearning_interview
Python подготовка с собесу: t.iss.one/python_job_interview
МАТЕМАТИКА: t.iss.one/data_math
💼 Папка с вакансиями: t.iss.one/addlist/_zyy_jQ_QUsyM2Vi
Папка Go разработчика: t.iss.one/addlist/MUtJEeJSxeY2YTFi
Папка Python разработчика: t.iss.one/addlist/eEPya-HF6mkxMGIy
Папка ML: https://t.iss.one/addlist/2Ls-snqEeytkMDgy
C++ папка: https://t.iss.one/addlist/CdBs5DLepLJmZjY6
C# папка: https://t.iss.one/addlist/u15AMycxRMowZmRi
Java папка: https://t.iss.one/addlist/ZM3J6oFNAnRlNWU6
FRONTEND папка: https://t.iss.one/addlist/mzMMG3RPZhY2M2Iy
Linux папка: https://t.iss.one/addlist/w4Doot-XBG4xNzYy
😆ИТ-Мемы: t.iss.one/memes_prog
🇬🇧Английский: t.iss.one/english_forprogrammers
🧠ИИ: t.iss.one/vistehno
📕Ит-книги бесплатно: https://t.iss.one/addlist/BkskQciUW_FhNjEy
👍7❤3🥰2
—
pip install bm25s[full]
Это сверхбыстрая библиотека лексического поиска, реализующая BM25 с помощью Scipy (ускорение до 500 раз).
BM25S построена исключительно на Numpy и Scipy, с дополнительными зависимостями для stemming и selection, а также интеграцией с Huggingface Hub, позволяющей вам легко делиться и использовать другие индексы BM25.
Благодаря минимальному количеству зависимостей bm25s позволяет сделать все внутри Python всего за несколько строк.
BM25S позволяет достичь скорости, сравнимой или превышающей скорость ElasticSearch, при этом отпадает необходимость в настройке веб-серверов, установке и запуске Java и использовании абстрактных API.
На графике — относительное ускорение BM25S и Elastic по отношению к rank-bm25, самой популярной реализации BM25 на Python. Скорость рассчитывается как отношение количества запросов в секунду по отношению к rank-bm25.
🤗 Hugging Face
@data_analysis_ml
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍12❤9🔥4
GPT генерируют последовательности в порядке слева направо. Возможно ли по-другому?
Arnaud Pannatier и его коллеги разработали σ-GPT, способный генерировать последовательности в любом порядке, динамически выбираемом во время вывода.
@data_analysis_ml
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍14❤6🔥4😍1
DataComp-LM предлагает стандартизированный набор из более чем 300Т нефильтрованных лексем из CommonCrawl, эффективные рецепты предварительного обучения на основе фреймворка open_lm и большой набор из более чем 50 бенчмарков.
DCLM позволяет исследователям экспериментировать с различными стратегиями построения наборов данных в различных вычислительных масштабах, от 411M до 7B моделей с параметрами.
@data_analysis_ml
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍9❤6🔥3
Особенности Mesop:
— UI пишется очень идиоматично и лаконично
— масса готовых компонентов, просто plug-and-play
— поддержка горячей перезагрузки, когда браузер сам обновляет UI по мере написания; при этом сохраняется состояние
— можно работать с готовым UI как с простым наборов функций Python
@data_analysis_ml
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍15🔥5❤4🥰1
Если использовать просто LLM для генерации SQL, то может получиться синтаксически неверный SQL, усугубляет ситуацию и масса диалектов SQL в разных БД.
К тому же LLM не имеет доступа к полной схеме базы данных, именам таблиц и столбцов, а также индексам, что ограничивает его возможности по созданию точных/эффективных запросов. А передавать полную схему в промпте каждый раз дорого и неудобно.
Ок, но ведь LLM отлично обучаются в контексте, поэтому, передавая релевантную информацию в промпте, можно улучшить их результаты — так мы приходим к RAG.
И здесь по ссылке ниже разбирается построение системы RAG с использованием Mistral AI, Neon Postgres как векторной БД, и LangChain, чтобы связать всё это вместе.
@data_analysis_ml
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥12❤7👍4
4M-21 — open-source фреймворк от Apple для обучения мультимодальных моделей и решения множества задач
Из-за CVPR релиз 4M-21 прошёл незаметно, а ведь фреймворк очень функциональный.
4M-21 позволяет обучать универсальные мультимодальные модели, способные выполнять разные задачи, связанные с CV.
4M-21 позволяет:
— создавать подписи к изображениям
— оценивать глубину
— обнаруживать объекты на изображении
— делать сегментацию объектов
— генерировать изображения
— и решать много других задач
@data_analysis_ml
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍7❤6🔥3