Forwarded from Machinelearning
⚡️ Qwen2 - самый крутой релиз откртых LLM со времен Llama 3!
Alibaba только что выпустили свое новое семейство мультиязычных моделей, которых превосходят по производительности Llama 3 по многим параметрам.
🤯 Qwen2 выпущен в 5 размерах и понимает 27 языков. В таких задачах, как написания кода и решения математических задач, Llama3 остает на всех тестах.
5️⃣ Размеры: 0.5B, 1.5B, 7B, 57B-14B (MoE), 72B.
✅ Контекст: 32k для 0.5B & 1.5B, 64k для 57B MoE, 128k для 7B и 72B
✅ Поддерживает 29 языков.
📜 Выпущены под лицензией Apache 2.0, за исключением версии 72B.
📖 BLOG: https://qwenlm.github.io/blog/qwen2/
🤗 HF collection: https://huggingface.co/collections/Qwen/qwen2-6659360b33528ced941e557f
🤖 https://modelscope.cn/organization/qwen
💻 GitHub: https://github.com/QwenLM/Qwen2
@ai_machinelearning_big_data
Alibaba только что выпустили свое новое семейство мультиязычных моделей, которых превосходят по производительности Llama 3 по многим параметрам.
🤯 Qwen2 выпущен в 5 размерах и понимает 27 языков. В таких задачах, как написания кода и решения математических задач, Llama3 остает на всех тестах.
5️⃣ Размеры: 0.5B, 1.5B, 7B, 57B-14B (MoE), 72B.
✅ Контекст: 32k для 0.5B & 1.5B, 64k для 57B MoE, 128k для 7B и 72B
✅ Поддерживает 29 языков.
📜 Выпущены под лицензией Apache 2.0, за исключением версии 72B.
📖 BLOG: https://qwenlm.github.io/blog/qwen2/
🤗 HF collection: https://huggingface.co/collections/Qwen/qwen2-6659360b33528ced941e557f
🤖 https://modelscope.cn/organization/qwen
💻 GitHub: https://github.com/QwenLM/Qwen2
@ai_machinelearning_big_data
👍8❤5🔥3
Здесь собраны тонны полезных ссылок по каждому из разделов, некоторые из этих ссылок уже постились в канале, скажем, ссылки на нереально полезные туториалы от Lilian Weng.
Вот основные разделы, которые покрывает этот roadmap:
— анализ временных рядов, марковские модели
— рекуррентные нейронные сети, LSTM и GRU,
— работа с языком: токенизация и т.д.
— методы файнтюнинга для LLM
— оценивание LLM и бенчмарки
— оптимизация LLM: квантование
— масштабирование контекста
— GAN, диффузионные модели
— мультимодальные модели
@data_analysis_ml
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
❤21👍6
Пройтись по конкретному URL и его подстраницам можно так:
curl -X POST https://api.firecrawl.dev/v0/crawl \
-H 'Content-Type: application/json' \
-H 'Authorization: Bearer YOUR_API_KEY' \
-d '{
"url": "https://mendable.ai"
}'
# { "jobId": "1234-5678-9101" }
@data_analysis_ml
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥16👍4❤3
Ratchet — это веб-фреймворк для вывода результатов машинного обучения.
Работает на базе WebGPU, так что он может работать на чём угодно, в том числе и на мобильных устройствах.
Ratchet заточен под скорость и простоту использования.
Использование в JavaScript выглядит наподобие:
// Asynchronous loading & caching with IndexedDB
let model = await Model.load(AvailableModels.WHISPER_TINY, Quantization.Q8, (p: number) => setProgress(p))
let result = await model.run({ input });
@data_analysis_ml
Please open Telegram to view this post
VIEW IN TELEGRAM
👍11❤3🔥3
⚡️ 4х-часовой Мастер-класс по созданию GPT-2 с нуля от Андрея Карпаты
Соучредитель OpenAI Андрей Карпаты выпустил подробную 4-часовую лекцию по созданию модели GPT-2 на Python с нуля.
Он разъясняет каждый шаг, начиная с создания пустого файла, при этом подробно описывая архитектуру и оптимизацию.
- сначала создаем GPT-2
- затем мы оптимизируем ее для очень быстрого обучения
- затем мы настраиваем оптимизацию процесса обучения и гиперпараметров, ссылаясь на материалы статьи GPT-2 и GPT-3
- затем мы проводим оценку модели.
* Смотреть
* Github
@data_analysis_ml
Соучредитель OpenAI Андрей Карпаты выпустил подробную 4-часовую лекцию по созданию модели GPT-2 на Python с нуля.
Он разъясняет каждый шаг, начиная с создания пустого файла, при этом подробно описывая архитектуру и оптимизацию.
- сначала создаем GPT-2
- затем мы оптимизируем ее для очень быстрого обучения
- затем мы настраиваем оптимизацию процесса обучения и гиперпараметров, ссылаясь на материалы статьи GPT-2 и GPT-3
- затем мы проводим оценку модели.
* Смотреть
* Github
@data_analysis_ml
👍27❤6🔥3🤯3
apt-get install liblapacke
python3 -m pip install aimet-torch
При помощи квантования AIMET помогает снизить требования к вычислительным ресурсам и памяти, при этом минимально влияя на точность работы модели.
@data_analysis_ml
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍16❤3🔥3🥰1
This media is not supported in your browser
VIEW IN TELEGRAM
—
pip install gsplat
gsplat позволяет очень быстро растеризовать гауссианы на CUDA. Библиотека вдохновлена докладом на SIGGRAPH «3D Gaussian Splatting for Real-Time Rendering of Radiance Fields»
@data_analysis_ml
Please open Telegram to view this post
VIEW IN TELEGRAM
👍7❤3🔥3
—
brew install cog
Одно дело — обучить ML-модель и поиграться в тестовой среде, совсем другое дело — довести модель до продакшена.
Обычно это решается с помощью Docker, но заставить его работать сложно: Docker-файлы, пред-/постобработка, серверы Flask, версии CUDA.
С Cog развернуть модель становится гораздо проще.
@data_analysis_ml
Please open Telegram to view this post
VIEW IN TELEGRAM
👍9🔥9❤4
This media is not supported in your browser
VIEW IN TELEGRAM
🎨 pypalettes: A large (+2500) collection of color maps for matplotlib/seaborn.
Поиск идеальных цветов для вашей диаграммы на Python может оказаться непростой задачей. Выбор цветов вручную часто приводит к перебору множества неподходящих вариантов.
Pypalette - новый пакет предоставляет коллекцию цветов из более чем 2500 палитр, тщательно отобранных сотнями экспертов.
Это приложение позволяет вам без особых усилий изучать различные палитры и выбирать лучшие ваорианты.
Импортируется всего в две строки кода, работает с диаграммами Matplotlib.
Найдите для себя подходящую цветовую палитру, которая выделит вашу диаграмму на общем фоне! 😍
▪Github
▪Проект
@data_analysis_ml
Поиск идеальных цветов для вашей диаграммы на Python может оказаться непростой задачей. Выбор цветов вручную часто приводит к перебору множества неподходящих вариантов.
Pypalette - новый пакет предоставляет коллекцию цветов из более чем 2500 палитр, тщательно отобранных сотнями экспертов.
Это приложение позволяет вам без особых усилий изучать различные палитры и выбирать лучшие ваорианты.
Импортируется всего в две строки кода, работает с диаграммами Matplotlib.
Найдите для себя подходящую цветовую палитру, которая выделит вашу диаграмму на общем фоне! 😍
pip install git+https://github.com/JosephBARBIERDARNAL/pypalettes.git
▪Github
▪Проект
@data_analysis_ml
👍32🔥13❤4
—
using MLJ
MLJ предоставляет реализацию разных ML-алгоритмов и полезные инструменты для настройки, оценивания и сравнения около 200 моделей, написанных на Julia и других языках.
@data_analysis_ml
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍10🔥3❤2