Анализ данных (Data analysis)
46.3K subscribers
2.33K photos
275 videos
1 file
2.07K links
Data science, наука о данных.

@haarrp - админ

@itchannels_telegram - 🔥 главное в ит

@ai_machinelearning_big_data - ML

@machinelearning_interview - вопросы с собесдований по Ml

РКН: clck.ru/3FmyAp
Download Telegram
📌Визуализация и анализ географических данных в R

Отличный онлайн-учебник по работе с географической информацией с помощью языка R
Здесь описываются азы работы с графикой, рассказывается, как проводить качественный пространственный анализ и не только

📎 Ссылка

@data_analysis_ml
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍19❤‍🔥5🔥3🥰2
📌Cloudflare представляет брандмауэр для AI, защищающий LLM

Относительно недавно Cloudflare запустила «Брандмауэр для ИИ» (Firewall for AI), предназначенный для защиты LLM.
Firewall for AI спроектирован как усовершенствованный межсетевой экран веб-приложений (WAF), специально предназначенный для приложений, использующих LLM.
Firewall for AI тщательно анализирует модели, подсказки, представленные пользователями, для раскрытия любых схем эксплуатации.

Брандмауэр для AI предназначен для бесперебойной работы в обширной сети Cloudflare, что дает компании преимущество в обнаружении угроз на начальных стадиях и, в свою очередь, обеспечивает надежную защиту как пользователей, так и моделей от атак и неправильного использования. Хотя этот продукт все еще находится на стадии разработки, он знаменует собой значительный прогресс в области безопасности ИИ.

Набор потенциальных угроз для LLM выходит за рамки уязвимостей, с которыми сталкиваются обычные веб-приложения и API-приложения. Как заметили исследователи, сложные уязвимости, уникальные для систем искусственного интеллекта, могут позволить злоумышленникам захватывать модели и выполнять несанкционированные маневры. Предполагается, что межсетевой экран для искусственного интеллекта Cloudflare, предназначенный для борьбы с этими новыми опасностями, будет работать аналогично стандартному WAF — тщательно проверяя каждый запрос API, содержащий подсказку LLM, на предмет индикаторов или шаблонов атак.

Компетенция Firewall не привязана к какой-то одной инфраструктуре; он может защищать модели, размещенные на платформе Cloudflare Workers AI или любой другой внешней инфраструктуре, а также может использоваться в тандеме с Cloudflare AI Gateway.

@data_analysis_ml
Please open Telegram to view this post
VIEW IN TELEGRAM
👍94🥰2
This media is not supported in your browser
VIEW IN TELEGRAM
🚀 Prepacking: A Simple Method for Fast Prefilling and Increased Throughput in Large Language Models

Хотите бесплатно увеличить скорость и эффективность использования памяти для вашего HuggingFace LLM без снижения качества генерации?

Представляем Prepacking - простой метод, позволяющий увеличить скорость работы LLM в 6 раз и эффективность использования памяти в 16 раз .

https://arxiv.org/pdf/2404.09529.pdf

@data_analysis_ml
👍12❤‍🔥4🥰31
🔥 Новые модели CodeQwen1.5-7B занимают очень высокие позиции в таблице лидеров Big Code, превосходя гораздо более крупные модели 🚀

8 моделей, в том числе модели с 0,5 B, 1,8 B, 4B, 7B, 14B, 32B и 72B
Многоязычная поддержка как базовых моделей, так и моделей чата;
Поддержка контекста длиной 32 КБ для моделей всех размеров

https://huggingface.co/spaces/Qwen/CodeQwen1.5-7b-Chat-demo

@data_analysis_ml
👍113🔥3
📌На чем программируют суровый ML в Гугле

Годная информация от Романа Ворушина, который работает в Google. Дальше от его лица

В 2015 году Гугл выпустил TensorFlow — супер-современный фреймворк для машинного обучения, созданный с участием самого Jeff Dean.

Но если почитать статьи за последние несколько лет из Google/DeepMind, то можно заметить что эксперименты реализованы с использованием совсем другого малоизвестного фреймворка JAX и лишь в самом конце портированы на TensorFlow/PyTorch. Именно с помощью JAX тренируют гигантские нейронные сети: текстовые, computer vision, мультимодальные.

JAX невероятно популярен внутри Гугла, но малоизвестен за его пределами. Исследователям это на руку - никто не принуждает делать фреймфорк доступным для всех, да и вице-президенты не терзают команду туманными целями и прочими синергиями.

У JAX есть отличная документация на Readthedocs. Я перепечатывал примеры оттуда в Google Colab, изменял их, пробовал их запускать на бесплатных Colab kernels with CPU/GPU/TPU.

Основные строительные блоки
🟡NumPy interface
Некоторые курсы по машинному обучению показывали как можно реализовать тренировку нейронных сетей умножением векторов/матриц NumPy, как вычислять производные цепочеатк функций. JAX - это в первую очередь невероятно ускоренный NumPy (see JAX As Accelerated NumPy). Все операции jax.numpy оптимизированы для выполнения на GPU/TPU. К этому добавлены возможности автоматической векторизации и параллелизации вычислений (как в курсе ml-class.org можно было векторизовать вычисления в Octave, ускоряя их в десятки-сотни раз).

🟡Just-in time compilation
Функции без побочных эффектов можно легко скомпилировать, обернув их в функцию jax.jit. Компиляция осуществляется методом трассировки - в качестве параметров передаются специальные объекты, которые запоминают все операции, которые с ними производятся. По результатам трассировки строится граф вычислений “входные параметры” - ??? - “выходные параметры”. Потом этот граф компилируется с использованием XLA (её когда-то написали для TensorFlow).

🟡Автоматическая дифферециация
Производные больше считать не нужно. Оборачиваешь loss function в функцию grad и получаешь градиенты. Вообще очень многое в JAX решается композицией функций. Опыт функционального программирования (Haskell, Erlang, ваши варианты) будет очень к стати.

🟡Flax - библиотека для нейронок
Flax — самая популярная библиотека для моделирования нейронных сетей. Отличная документация, есть много примеров, в том числе реальных исследовательских проектов из Гугла. Еще со всем недавно с ней конкурировала библиотека Haiku, но в конце концов Flax стал более популярен и Haiku перевели в режим поддержки.
У Flax офигенная философия. Чего только стоит “Prefer duplicating code over a bad abstraction.” Не всем такая философия подходит, но мне очень резонирует.

📎 Подробнее

@data_analysis_ml
Please open Telegram to view this post
VIEW IN TELEGRAM
👍258🥰3😁1
This media is not supported in your browser
VIEW IN TELEGRAM
🧔 Microsoft Research анонсировала VASA-1.

ИИ генератор видео, который выглядит очень реалистично.

Для создания гиперреалистичного видео с изображением говорящего лица, требуется всего одна портретная фотография, чтобы создать видео с точной синхронизацией движения губ, реалистичным выражением лица и естественным движениями головы в режиме реального времени.

https://www.microsoft.com/en-us/research/project/vasa-1/

@data_analysis_ml
👍22🔥103🥰1
Forwarded from Machinelearning
This media is not supported in your browser
VIEW IN TELEGRAM
👑Llama 3 is here, with a brand new tokenizer! 🦙

Вышла Llama 3


Сегодня вышла новая SOTA Llama 3 в двух версиях на 8B и 70B параметров.

Длина контекста 8К, поддержка 30 языков.

HF: https://huggingface.co/spaces/ysharma/Chat_with_Meta_llama3_8b
Blog: https://ai.meta.com/blog/meta-llama-3/

Вы можете потестить 🦙 MetaLlama 3 70B и 🦙 Meta Llama 3 8B с помощью 🔥 бесплатного интерфейса: https://llama3.replicate.dev/

P.S. В процессе обучения находится модель на 400В+ параметров.

@ai_machinelearning_big_data
👍10🔥43
📌Сверхполезный открытый учебник по Machine Learning

Здесь собрана коллекция задачек о нейросетях, параллельно даётся необходимая теория с объяснением
Очень годно, рекомендую

Что внутри?
├╼ всего лишь функция
├╼ градиентный спуск
├╼ алгоритм обратного распространения ошибки
├╼ что выплёвывает нейросеть
├╼ свёрточные сети
├╼ нейросети – конструктор LEGO
├╼ рекуррентные сети
╰╼ матричное дифференцирование

📎 Учебник

@data_analysis_ml
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍39🔥83👌1
📌Экстраполяция и интерполяция нейронных сетей

🟡Искусственные нейронные сети — это мощные инструменты логического вывода. Однако это не означает, что они могут изучать правила так, как это делают люди. Например, мы можем применять арифметику к произвольно большим числам. Это ключевое понимание, на котором основана арифметика.
Может ли нейронная сеть делать обобщения на случаи, которые далеки от тренировочных данных?

В общем, держите полезную статью о том, где затрагиваются детали внутренней реализации нейросетей

📎 Статья

@data_analysis_ml
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍10🔥43
Российские студенты стали победителями ICPC

Это самые крупные международные соревнования по программированию в мире. В этом году финал проходил за два года — 2022 и 2023. Студенты факультета компьютерных наук, основанного ВШЭ и Яндексом, заняли призовые места в сразу двух соревнованиях.

За 2023 год абсолютными чемпионами стала команда FFTilted. Ее участники — Фёдор Ромашов, Александр Бабин и Кирилл Кудряшов — студенты программы Прикладной математики и информатики (ПМИ), разработанной Яндексом в момент основания факультета.

За 2022 год третье место в абсолютном зачете заняла команда Undertrained+Overpressured. Ее представляли Максим Гороховский, Иван Сафонов и Тимофей Федосеев.

Обе команды показали лучшие результаты среди всех российских вузов. Всего в ICPC приняли участие команды из 170 университетов и 50 стран мира.
38🔥11👍7❤‍🔥1🕊1