Проект Facets предоставляет инструменты визуализации для понимания и анализа наборов данных машинного обучения:
Facets Overview и Facets Dive
.Визуализации реализованы в виде веб-компонентов Polymer и могут быть легко встроены в блокноты Jupyter или веб-страницы.
Прмеры визуализаций можно найти на странице описания проекта Facets: pair-code.github.io/facets/
▪Github
@data_analysis_ml
Please open Telegram to view this post
VIEW IN TELEGRAM
👍26❤2🔥2
This media is not supported in your browser
VIEW IN TELEGRAM
Это позволит ускорить рабочий процесс и сократить количество опечаток и ошибок, особенно при работе с длинными или сложными командами.
https://fig.io/
@data_analysis_ml
Please open Telegram to view this post
VIEW IN TELEGRAM
👍26🔥4❤2👎1
🚕 Как Uber вычисляет время прибытия со скоростью полмиллиона запросов в секунду
📌 Читать
@data_analysis_ml
📌 Читать
@data_analysis_ml
👍24🔥6❤3🥰1
⚡️ Nvidia и Suno анонсировали модели Parakeet RNNT.
Parakeet превосходит Open AI Whisper и занимает первое место в таблице лидеров Open ASR
Demo: https://huggingface.co/spaces/nvidia/parakeet-rnnt-1.1b
https://huggingface.co/spaces/hf-audio/open_asr_leaderboard
@data_analysis_ml
Parakeet превосходит Open AI Whisper и занимает первое место в таблице лидеров Open ASR
Demo: https://huggingface.co/spaces/nvidia/parakeet-rnnt-1.1b
https://huggingface.co/spaces/hf-audio/open_asr_leaderboard
@data_analysis_ml
🔥12👍3❤2
💻 Изучайте Математику для Data Science бесплатно с помощью этих бесплатных курсов с Udacity
1. Linear Algebra Refresher Course
2. Intro to Statistics
3. Intro to Inferential Statistics
4. Intro to Descriptive Statistics
5. Eigenvectors and Eigenvalues
6. Intro to Artificial Intelligence
7. Differential Equations in Action
📌 Список
@data_analysis_ml
1. Linear Algebra Refresher Course
2. Intro to Statistics
3. Intro to Inferential Statistics
4. Intro to Descriptive Statistics
5. Eigenvectors and Eigenvalues
6. Intro to Artificial Intelligence
7. Differential Equations in Action
📌 Список
@data_analysis_ml
👍28❤8🙏3
⚡️ ExLlamaV2: самая быстрая библиотека для работы с LLM
Квантизация больших языковых моделей (Large Language Models, LLM) — наиболее популярный подход для уменьшения размера этих моделей и ускорения вывода. GPTQ (Post-Training Quantization for GPT, пост-тренировочная квантизация GPT) — один из алгоритмов, обеспечивающих потрясающую производительность на графических процессорах. По сравнению с неквантированными моделями, он использует почти в 3 раза меньше VRAM (Video Random Access Memory, оперативная видеопамять), обеспечивая при этом аналогичный уровень точности и более высокую скорость генерации. GPTQ стал настолько популярным, что недавно был напрямую интегрирован в библиотеку Transformers.
ExLlamaV2 — это библиотека, позволяющая выжать еще больше производительности из GPTQ. Благодаря новым ядрам, она оптимизирована для (молниеносно) быстрого вывода. Кроме того, в ней представлен новый формат квантизации EXL2, обеспечивающий большую гибкость при хранении весов.
В этой статье рассмотрим, как квантировать базовые модели в формате EXL2 и как их запускать. Код доступен на GitHub и Google Colab.
📌 Читать
@data_analysis_ml
Квантизация больших языковых моделей (Large Language Models, LLM) — наиболее популярный подход для уменьшения размера этих моделей и ускорения вывода. GPTQ (Post-Training Quantization for GPT, пост-тренировочная квантизация GPT) — один из алгоритмов, обеспечивающих потрясающую производительность на графических процессорах. По сравнению с неквантированными моделями, он использует почти в 3 раза меньше VRAM (Video Random Access Memory, оперативная видеопамять), обеспечивая при этом аналогичный уровень точности и более высокую скорость генерации. GPTQ стал настолько популярным, что недавно был напрямую интегрирован в библиотеку Transformers.
ExLlamaV2 — это библиотека, позволяющая выжать еще больше производительности из GPTQ. Благодаря новым ядрам, она оптимизирована для (молниеносно) быстрого вывода. Кроме того, в ней представлен новый формат квантизации EXL2, обеспечивающий большую гибкость при хранении весов.
В этой статье рассмотрим, как квантировать базовые модели в формате EXL2 и как их запускать. Код доступен на GitHub и Google Colab.
@data_analysis_ml
Please open Telegram to view this post
VIEW IN TELEGRAM
👍6🔥4❤1🤨1
Может выполняться полностью на CPU или ускоряться с помощью всего 8 ГБ VRAM.
Проект поддерживает множество алгоритмов.
▪Github
▪Colab
@data_analysis_ml
Please open Telegram to view this post
VIEW IN TELEGRAM
👍11❤4🥰1
⚡️ Swarms in Torch - это экспериментальный репозиторий, созданный для работы с роевыми алгоритмами.
Благодаря целому ряду полезных алгоритмов, включая
▪Github
▪Документация
@data_analysis_ml
Благодаря целому ряду полезных алгоритмов, включая
Particle Swarm Optimization (PSO), Ant Colony, Sakana, Mambas Swar
m и других, реализованных с помощью PyTorch, вы сможете легко использовать мощь роевых технологий в своих проектах.pip3 install swarms-torch
▪Github
▪Документация
@data_analysis_ml
👍12🔥5❤3
⚡️ Вышел LiteLlama
Подобие LLaMa 2, однако с существенно меньшим размером модели,
https://huggingface.co/ahxt/LiteLlama-460M-1T
@data_analysis_ml
Подобие LLaMa 2, однако с существенно меньшим размером модели,
LiteLlama-460M-1T
имеет 460M
параметров, обученных на 1T токенах.
https://huggingface.co/ahxt/LiteLlama-460M-1T
@data_analysis_ml
👍10🔥3❤1
⚡ Построение языковых агентов в виде графов графов ⚡
Новый анонс LangChain v0.1.0 - LangGraph.
🤖 Инструмент был протестирован командой разработчиков langchain в течение последних шести месяцев и выглядит, как лучший способ создания агентов LLM.
🌀 Основное нововведение - простое определение циклов агента. Это невероятно важно для агентов, которые часто описываются как выполнение LLM в цикле for.
Библиотека предоставляет интерфейс для создания циклических графов, с настраиваемыми, определяемыми пользователем переходами между узлами.
▪Пример с кодом создания агента
@data_analysis_ml
Новый анонс LangChain v0.1.0 - LangGraph.
🤖 Инструмент был протестирован командой разработчиков langchain в течение последних шести месяцев и выглядит, как лучший способ создания агентов LLM.
🌀 Основное нововведение - простое определение циклов агента. Это невероятно важно для агентов, которые часто описываются как выполнение LLM в цикле for.
Библиотека предоставляет интерфейс для создания циклических графов, с настраиваемыми, определяемыми пользователем переходами между узлами.
pip install langgraph
▪Github▪Пример с кодом создания агента
@data_analysis_ml
👍13❤2🔥2
https://blog.abacus.ai/blog/category/ai-education
@data_analysis_ml
Please open Telegram to view this post
VIEW IN TELEGRAM
👍13❤2😐2🔥1
This media is not supported in your browser
VIEW IN TELEGRAM
🌍 НАСА размещает на #AWS более 9 000 продуктов данных о нашей планете!
🚀В этом хранилище представлен полный список данных НАСА по наукам о Земле, доступных для исследований и анализа. Данные управляются и поддерживаются программой НАСА "Системы данных по наукам о Земле" (ESDS), которая обеспечивает доступность и удобство использования данных.
Узнайте, как легко найти и загрузить данных с помощью последнего руководства по #leafmap. 📚🔎
📓 Notebook: https://leafmap.org/notebooks/88_nasa_earth_data
🗂️ Data Catalog: https://github.com/opengeos/NASA-Earth-Data
🎥 Video: https://youtu.be/0ytxNNvc2Hg
#opendata #geospatial #python #dataviz #NASA
@data_analysis_ml
🚀В этом хранилище представлен полный список данных НАСА по наукам о Земле, доступных для исследований и анализа. Данные управляются и поддерживаются программой НАСА "Системы данных по наукам о Земле" (ESDS), которая обеспечивает доступность и удобство использования данных.
Узнайте, как легко найти и загрузить данных с помощью последнего руководства по #leafmap. 📚🔎
📓 Notebook: https://leafmap.org/notebooks/88_nasa_earth_data
🗂️ Data Catalog: https://github.com/opengeos/NASA-Earth-Data
🎥 Video: https://youtu.be/0ytxNNvc2Hg
#opendata #geospatial #python #dataviz #NASA
@data_analysis_ml
❤18👍13🔥7👎1
This media is not supported in your browser
VIEW IN TELEGRAM
GitHub недавно сообщили, что JavaScript снова стал самым популярным языком программирования в мире. Чтобы поддержать веб-разработчиков, изучающих и разрабатывающих генеративный ИИ, deeplearning_ai только что запустили новый краткий курс по JavaScript.
В курсе Build LLM Apps with LangChain.js вы познакомитесь с элементами, характерными для разработки ИИ, включая:
(i) использование парсеров данных для получения данных из распространенных источников
(ii) промпты, которые используются для создания контекста LLM
(iii) Модули для поддержки RAG, такие как разделители текста и интеграция с векторными хранилищами
(iv) Работа с различными моделями для написания ИИ-приложений
(v) парсеры, которые извлекают и форматируют выходные данные для обработки последующим кодом.
Вы также будете работать с языком LangChain, который позволяет легко составлять последовательности (также называемые цепочками) модулей для выполнения сложных задач с помощью LLM.
Собрав все это воедино, вы поработаете над разговорным LLM-приложением для ответов на вопросы, способным использовать внешние данные в качестве контекста.
📌 Курс
@data_analysis_ml
Please open Telegram to view this post
VIEW IN TELEGRAM
👍13🔥2❤1👎1
Функция
Если источники данных разной длины, то объединение может привести к ошибкам ошибкам.
Начиная с #Python 3.10, использование ключевого слова
@data_analysis_ml
zip()
в Python создает итератор, который объединяет элементы из нескольких источников данных. Эта функция работает со списками, кортежами, множествами и словарями для создания списков или кортежей, включающих все эти данные.Если источники данных разной длины, то объединение может привести к ошибкам ошибкам.
Начиная с #Python 3.10, использование ключевого слова
strict
в функции zip
выховет ошибку ValueError
, если длина итераций неравна.@data_analysis_ml
❤19👍9🔥6🤯3
Теперь российский Хоум Банк выделил IT в отдельную компанию
Фокус внимания новой структуры, которая уже получила статус участника «Сколково», – разработка инновационных продуктов в управлении рисками, кредитовании, платежах и других банковских операциях. Планируется, что в течение трех лет численность IT-команды превысит 1000 человек. Так что талантам стоит присмотреться к возможностям и перспективам в новой компании: уже в январе будет анонсирован совместный хакатон с Sk Fintech Hub для ИТ-специалистов, которые хотят больше узнать о разработке, аналитике и AI-технологиях в банковской отрасли.
@data_analysis_ml
Фокус внимания новой структуры, которая уже получила статус участника «Сколково», – разработка инновационных продуктов в управлении рисками, кредитовании, платежах и других банковских операциях. Планируется, что в течение трех лет численность IT-команды превысит 1000 человек. Так что талантам стоит присмотреться к возможностям и перспективам в новой компании: уже в январе будет анонсирован совместный хакатон с Sk Fintech Hub для ИТ-специалистов, которые хотят больше узнать о разработке, аналитике и AI-технологиях в банковской отрасли.
@data_analysis_ml
👍21❤3👏2🥰1🤣1🤨1
〰️ Outlines
Библиотека Outlines позволяет управлять выводами языковых моделей.
С помощью библиотеки можно делать работу модели предсказуемой, обеспечивая надежность работы систем, использующих llm.
▪Github
▪Docs
@data_analysis_ml
Библиотека Outlines позволяет управлять выводами языковых моделей.
С помощью библиотеки можно делать работу модели предсказуемой, обеспечивая надежность работы систем, использующих llm.
▪Github
▪Docs
@data_analysis_ml
👍10❤5🔥3
🔥 Дайджест полезных материалов из мира Машинного обучения за неделю
Почитать:
— Направо пойдёшь — тестировщиком станешь, налево пойдёшь — ˂...˃: куда податься питонисту?
— 5 готовых скриптов Python, которые упростят вашу жизнь 2024
— Список актуальных курсов на 2024 год
— Семантический поиск и генерация текста на R. Часть 1
— Где бесплатно изучать Rust в 2024
— Использование машинного обучения для борьбы с DDoS атаками
— Маленькая история импортозамещения о разработке системы автоматического мониторинга моделей Alfa-MRM
— Как мы победили в двух хакатонах Цифрового Прорыва. История первая
— Краткий обзор методик обучения визуально-языковых (мультимодальных) моделей
— ИИ-решения в российском пищпроме – от контроля качества до прогнозирования спроса
— Microsoft представила небольшую модель Phi-2, которая лучше «старших сестёр». Что это за проект?
— SALMONN — универсальная модель для всех типов аудиоданных
— Нужен ли вам fine-tuning моделей и что это такое
— Авторские права на производные от ИИ
— Neural Style Transfer
— How should AI answer more humanly ?
— Dear MLE's..
— Balancing Innovation and Privacy: Navigating LLM Augmentation with RAG and RA-DIT
— Leaking sensitive data via membership inference attacks on machine learning models
— Machine Learning
— MLOps in practice: building and deploying a machine learning app
— CoinSavvy: Revolutionizing Crypto Price Predictions
— Training a neural network for fun and profit
— New blog journey ✨
Посмотреть:
🌐 Топ трюк оптимизации кода #Python !!! #код #программирование #yotubeshorts #питон #youtube (⏱ 00:54)
🌐 Building Robust and Scalable Recommendation Engines for Online Food Delivery (⏱ 25:25)
🌐 Lightning Interview "How to Ace the Data Science Job Interview in 2024" (⏱ 46:23)
Хорошего дня!
@data_analysis_ml
Почитать:
— Направо пойдёшь — тестировщиком станешь, налево пойдёшь — ˂...˃: куда податься питонисту?
— 5 готовых скриптов Python, которые упростят вашу жизнь 2024
— Список актуальных курсов на 2024 год
— Семантический поиск и генерация текста на R. Часть 1
— Где бесплатно изучать Rust в 2024
— Использование машинного обучения для борьбы с DDoS атаками
— Маленькая история импортозамещения о разработке системы автоматического мониторинга моделей Alfa-MRM
— Как мы победили в двух хакатонах Цифрового Прорыва. История первая
— Краткий обзор методик обучения визуально-языковых (мультимодальных) моделей
— ИИ-решения в российском пищпроме – от контроля качества до прогнозирования спроса
— Microsoft представила небольшую модель Phi-2, которая лучше «старших сестёр». Что это за проект?
— SALMONN — универсальная модель для всех типов аудиоданных
— Нужен ли вам fine-tuning моделей и что это такое
— Авторские права на производные от ИИ
— Neural Style Transfer
— How should AI answer more humanly ?
— Dear MLE's..
— Balancing Innovation and Privacy: Navigating LLM Augmentation with RAG and RA-DIT
— Leaking sensitive data via membership inference attacks on machine learning models
— Machine Learning
— MLOps in practice: building and deploying a machine learning app
— CoinSavvy: Revolutionizing Crypto Price Predictions
— Training a neural network for fun and profit
— New blog journey ✨
Посмотреть:
🌐 Топ трюк оптимизации кода #Python !!! #код #программирование #yotubeshorts #питон #youtube (⏱ 00:54)
🌐 Building Robust and Scalable Recommendation Engines for Online Food Delivery (⏱ 25:25)
🌐 Lightning Interview "How to Ace the Data Science Job Interview in 2024" (⏱ 46:23)
Хорошего дня!
@data_analysis_ml
👍13🔥4❤2
🦙 Путеводитель по LLM от Llama Hitchiking
Трудно уследить за многими новыми терминами. Что такое MoE? LASER? SuperHOT? Bagel? Tri Dao? 😱🤯
Взгляните на это краткое руководство, в котором даны (очень краткие) определения всех этих понятий и не только! Мемы прилагаются.
Наслаждайтесь!
📌 Читать
@data_analysis_ml
Трудно уследить за многими новыми терминами. Что такое MoE? LASER? SuperHOT? Bagel? Tri Dao? 😱🤯
Взгляните на это краткое руководство, в котором даны (очень краткие) определения всех этих понятий и не только! Мемы прилагаются.
Наслаждайтесь!
📌 Читать
@data_analysis_ml
👍13❤3🔥2🕊1