Виталик сделал мем, потому что мне лень. Отдельный кудос за offchain attestations: оказывается, криптографическая подпись работает ничуть не хуже, если ее применять в любом другом месте, кроме блокчейна. Но токены хомяку продать сложнее.
1 картинка: куда писать, чтобы по ветру или хотя бы не сильно против
2 картинка: что реально важно и люди вспомнят через 5-50 лет
1 картинка: куда писать, чтобы по ветру или хотя бы не сильно против
2 картинка: что реально важно и люди вспомнят через 5-50 лет
Латентный веб переродился.
Я писал про первую реализацию почти два года назад. А на днях NOUS Research (вайфу-ИИ-ниндзя-кодеры с Дискорда) зарелизили новую, более крутую итерацию той же идеи.
Это браузер, который на лету создает интернет для вас. Умеет делать сайты, лендинги, красивый графон и даже 3D игрушки. Каждая страница создана персонально для вас — её никогда не было в истории и никто, кроме вас, больше никогда её не увидит. Даже скриншоты из аттача сделаны только для меня.
Смотрю на пару лет вперед и верю, что все большая часть веба станет именно такой. Только нужно добавить SSI, персональный граф памяти и знаний, интеграции и больше юзкейсов из области развлечений, коммерции, новостей, мультимедиа и т.д.
Тыкать тут: https://worldsim.nousresearch.com/browser/
Я писал про первую реализацию почти два года назад. А на днях NOUS Research (вайфу-ИИ-ниндзя-кодеры с Дискорда) зарелизили новую, более крутую итерацию той же идеи.
Это браузер, который на лету создает интернет для вас. Умеет делать сайты, лендинги, красивый графон и даже 3D игрушки. Каждая страница создана персонально для вас — её никогда не было в истории и никто, кроме вас, больше никогда её не увидит. Даже скриншоты из аттача сделаны только для меня.
Смотрю на пару лет вперед и верю, что все большая часть веба станет именно такой. Только нужно добавить SSI, персональный граф памяти и знаний, интеграции и больше юзкейсов из области развлечений, коммерции, новостей, мультимедиа и т.д.
Тыкать тут: https://worldsim.nousresearch.com/browser/
Forwarded from EDU (Bayram Annakov)
Школа GenAI Разработчика (по заявкам читателей)
По многочисленным просьбам и советам делаю школу GenAI разработчика, в которой мы в практическом русле разберем и опробуем все ключевые аспекты разработки GenAI продуктов.
Будет 6 встреч по 2 часа, с сильным практическим уклоном, чтобы на выходе каждой встречи был работающий код, решающий конкретную бизнес-задачу.
Темы:
1) Intro to GenAI. In-Context Learning
2) Retrieval-Augmented Generation
3) Fine Tuning
4) Generative Agent
5) Multi-Agent Systems
6) LLMOps: Testing, Monitoring & Debugging GenAI Systems
Для кого?
Для каждого, кто хочет научиться разрабатывать GenAI продукты. Моя задача - помочь вам сделать "первый шаг" в практический мир разработки Generative AI продуктов, разобраться в подходах и инструментах, набить руку.
ОЧЕНЬ ВАЖНО: эффективное участие предполагает знание Python языка программирования. Вам будет сложно без этого.
Если же вы знаете другой язык программирования, разрабатываете на нем хотя бы 3 года и чувствуете себя комфортно с GitHub Co-Pilot или подобными инструментами - то должно быть все в порядке.
Когда?
Стартуем - 18 мая, встречи по субботам в 16мск, 6 недель подряд.
Стоимость
Можно купить пакет на все встречи за $200 или покупать по одной - $50 за встречу.
Для тех, кто покупал пакет (3,6 или12 мес) на мои EDU встречи, действует 20% скидка.
Если не сможете очно участвовать, то будет запись и все материалы (презентации, исходники и тп) при покупке доступа
По многочисленным просьбам и советам делаю школу GenAI разработчика, в которой мы в практическом русле разберем и опробуем все ключевые аспекты разработки GenAI продуктов.
Будет 6 встреч по 2 часа, с сильным практическим уклоном, чтобы на выходе каждой встречи был работающий код, решающий конкретную бизнес-задачу.
Темы:
1) Intro to GenAI. In-Context Learning
2) Retrieval-Augmented Generation
3) Fine Tuning
4) Generative Agent
5) Multi-Agent Systems
6) LLMOps: Testing, Monitoring & Debugging GenAI Systems
Для кого?
Для каждого, кто хочет научиться разрабатывать GenAI продукты. Моя задача - помочь вам сделать "первый шаг" в практический мир разработки Generative AI продуктов, разобраться в подходах и инструментах, набить руку.
ОЧЕНЬ ВАЖНО: эффективное участие предполагает знание Python языка программирования. Вам будет сложно без этого.
Если же вы знаете другой язык программирования, разрабатываете на нем хотя бы 3 года и чувствуете себя комфортно с GitHub Co-Pilot или подобными инструментами - то должно быть все в порядке.
Когда?
Стартуем - 18 мая, встречи по субботам в 16мск, 6 недель подряд.
Стоимость
Можно купить пакет на все встречи за $200 или покупать по одной - $50 за встречу.
Для тех, кто покупал пакет (3,6 или12 мес) на мои EDU встречи, действует 20% скидка.
Если не сможете очно участвовать, то будет запись и все материалы (презентации, исходники и тп) при покупке доступа
Telegram
Mindshare App
Seamlessly Book and Manage Mentorship Sessions. Connect with your mentor and schedule your learning journey with ease.
Киллер фича Биткоина — это глобальная резервная валюта и надгосударственные, нецензуоирцемые деньги.
Киллер фича Эфира — децентрализованные финансовые рынки, социальные сети, игры, суверенная личность.
Именно поэтому между ними нет и не будет конкуренции.
Just stating the obvious.
Киллер фича Эфира — децентрализованные финансовые рынки, социальные сети, игры, суверенная личность.
Именно поэтому между ними нет и не будет конкуренции.
Just stating the obvious.
Написанное выше постепенно становится главной темой политической борьбы. (Картинка 1)
Фиатной экономике не выгоден биткоин. Он её самая серьезная и большая угроза. Но фиатной экономике так же не выгоден профицит бюджета и умеренная кредитная политика. Фиатная экономика, особенно на фоне демократии, стремится к максимальному leverage прямо сегодня. Период безудержного количественного смягчения сменяется периодами дебейза. Инфляция это страшно только для людей, которые зарабатывают и хранят в фиатной валюте. Для государства это способ бесконечного займа и перекладывания стоимости на население.
Как не назови, любой политик фиатного мира будет стремиться купить максимум сегодня в счет долгов, гиперинфляции и экономических шоков завтра. Пусть платит тот, кто победит его на выборах. Вернее, пусть платят все граждане страны, но в следующем сроке.
Фискальным и монетарным властям не выгоден биткоин. Но для экономики необходима альтернатива. Текущая система неуправляема и неэффективна. Она вынуждена бороться с естественной технологической дефляцией в силу необходимости постоянного дебейза (размытия ценности денег). Другими словами, ей нужно постоянно печатать деньги, чтобы покрывать постоянные риски over leveraging, перезакредитованности. В 2008 мы видели первый звоночек, а сейчас в полном разгаре первый акт. (Картинка 2).
Фиатной экономике не выгоден биткоин. Он её самая серьезная и большая угроза. Но фиатной экономике так же не выгоден профицит бюджета и умеренная кредитная политика. Фиатная экономика, особенно на фоне демократии, стремится к максимальному leverage прямо сегодня. Период безудержного количественного смягчения сменяется периодами дебейза. Инфляция это страшно только для людей, которые зарабатывают и хранят в фиатной валюте. Для государства это способ бесконечного займа и перекладывания стоимости на население.
Как не назови, любой политик фиатного мира будет стремиться купить максимум сегодня в счет долгов, гиперинфляции и экономических шоков завтра. Пусть платит тот, кто победит его на выборах. Вернее, пусть платят все граждане страны, но в следующем сроке.
Фискальным и монетарным властям не выгоден биткоин. Но для экономики необходима альтернатива. Текущая система неуправляема и неэффективна. Она вынуждена бороться с естественной технологической дефляцией в силу необходимости постоянного дебейза (размытия ценности денег). Другими словами, ей нужно постоянно печатать деньги, чтобы покрывать постоянные риски over leveraging, перезакредитованности. В 2008 мы видели первый звоночек, а сейчас в полном разгаре первый акт. (Картинка 2).
ИИ — вещь или сеть?
Существует две модели создания и распространения технологий: вещи и сети. Вещи — это стиральная машинка, машина, чип, мобильный телефон. Их изобретают, создают производство и продают поштучно. Сети — это дороги, телеграф, интернет. Их ценность пропорциональна количеству участников в сети (закон Меткалфе). Открытые и удобные сети растут, а бизнесы строятся поверх них.
ИИ имеет оба свойства. Сами модели — это вещи, так как их создают и продают, у них есть классическая цепочка добавленной стоимости. Но, например, агенты — это сети, потому что чем больше специализированных публично доступных агентов, тем более сложные процессы можно с их помощью делать.
Инвестируя в ИИ важно смотреть на оба качества:
1. конкурентные преимущества моделей, бизнес-модели компаний их создающих, стоимость производства и спрос
2. сеть агентов и то каким образом ценность каждой функции сети (агенты, фреймворки, системы оркестрации, платежей, коммуникации между агентами) увеличивается из-за роста всей сети
Существует две модели создания и распространения технологий: вещи и сети. Вещи — это стиральная машинка, машина, чип, мобильный телефон. Их изобретают, создают производство и продают поштучно. Сети — это дороги, телеграф, интернет. Их ценность пропорциональна количеству участников в сети (закон Меткалфе). Открытые и удобные сети растут, а бизнесы строятся поверх них.
ИИ имеет оба свойства. Сами модели — это вещи, так как их создают и продают, у них есть классическая цепочка добавленной стоимости. Но, например, агенты — это сети, потому что чем больше специализированных публично доступных агентов, тем более сложные процессы можно с их помощью делать.
Инвестируя в ИИ важно смотреть на оба качества:
1. конкурентные преимущества моделей, бизнес-модели компаний их создающих, стоимость производства и спрос
2. сеть агентов и то каким образом ценность каждой функции сети (агенты, фреймворки, системы оркестрации, платежей, коммуникации между агентами) увеличивается из-за роста всей сети
Forwarded from LLM под капотом
Продуктовые LLM Бенчмарки GPT-4o 🤩
GPT-4o модель очень шустра, обладает контекстом в 128K и стоит дешевле GPT-4 Turbo. А еще умеет понимать эмоции и выражать их.
Под капотом у нее расширенный словарь, который в разы уменьшает число tokens, которые использует модель. Говорят, что улучшили понимание языков.
Особо сильного скачка у модели не было, т.к. модели OpenAI там уже практически уперлись в потолок - она просто обновила максимумы.
Но там есть один нюанс - категория Reason (способность к сложным рассуждениям) исторически была сделана очень сложной. GPT-4o подняла эту категорию с 62 (GPT-4 Turbo v3/1106-preview) до 75.
Что самое крышесносное - вся эта красота доступна не только по API, но и будет доступна в ChatGPT бесплатно. А это вызывает вопросик - что же такого OpenAI выкатят платным пользователям, чтобы те не ломанулись отменять подписки?
Ваш, @llm_under_hood 🤗
---
Описание работы, категорий и примеры кейсов есть в лабах. См другие бенчмарки по категории #bench
GPT-4o модель очень шустра, обладает контекстом в 128K и стоит дешевле GPT-4 Turbo. А еще умеет понимать эмоции и выражать их.
Под капотом у нее расширенный словарь, который в разы уменьшает число tokens, которые использует модель. Говорят, что улучшили понимание языков.
Особо сильного скачка у модели не было, т.к. модели OpenAI там уже практически уперлись в потолок - она просто обновила максимумы.
Но там есть один нюанс - категория Reason (способность к сложным рассуждениям) исторически была сделана очень сложной. GPT-4o подняла эту категорию с 62 (GPT-4 Turbo v3/1106-preview) до 75.
Что самое крышесносное - вся эта красота доступна не только по API, но и будет доступна в ChatGPT бесплатно. А это вызывает вопросик - что же такого OpenAI выкатят платным пользователям, чтобы те не ломанулись отменять подписки?
Ваш, @llm_under_hood 🤗
---
Описание работы, категорий и примеры кейсов есть в лабах. См другие бенчмарки по категории #bench
Очень советую посмотреть демки новой модели GPT-4 Omni. Этот релиз это прям большой шаг от крутой технологии к ежедневно незаменимому помощнику не для 10 млн кодеров, а для 5-6 млрд людей с телефонами. Вот классные примеры:
— Ассистент на совещаниях, с которым можно в любой момент поговорить
— Помогает научиться решать задачи используя видео в реальном времени
— Синхронный перевод и озвучка между любыми языками
— Помогает слепым видеть
— Поёт
— Помогает студенту в реальном времени
— Ассистент на совещаниях, с которым можно в любой момент поговорить
— Помогает научиться решать задачи используя видео в реальном времени
— Синхронный перевод и озвучка между любыми языками
— Помогает слепым видеть
— Поёт
— Помогает студенту в реальном времени
Теперь переведу на понятный язык что случилось:
1. Технически, GPT-4o — это новая модель, которая одновременно работает с текстовой, речевой и видео модальностями. В этом вся инновация.
2. Продуктово, большинство показанных кейсов уже существовали в форме десятков продуктов (remember Rabbit? 🐰), но OpenAI показали продуктовый уровень и дисциплину сильно выше большинства стартапов. И это не связано с инновациями в базовой модели — скорее качественный vision & execution того, как ИИ ассистент постепенно проникнет во все сферы нашей жизни.
1. Технически, GPT-4o — это новая модель, которая одновременно работает с текстовой, речевой и видео модальностями. В этом вся инновация.
2. Продуктово, большинство показанных кейсов уже существовали в форме десятков продуктов (remember Rabbit? 🐰), но OpenAI показали продуктовый уровень и дисциплину сильно выше большинства стартапов. И это не связано с инновациями в базовой модели — скорее качественный vision & execution того, как ИИ ассистент постепенно проникнет во все сферы нашей жизни.
Ну что, про новый GPT все забыли уже?
Прямо сейчас идет мега-дупер-супер-анонс новой гугловской модели Gemini:
— генерация музыки
— генерация видео 1080p
— окно контекста 2 миллиона токенов (несколько тысяч страниц текста в одном промте)
— мультимодальность (кого этим удивишь теперь?)
— новая диффузионка, которая умеет красиво и в текст
— как и у всех, снижение цены в несколько раз
— встроенные ассистенты (они там че, сговорились все?)
— еще насыпали новое поколение своих собственных TPU и процессоров для ML
Прям ноздря в ноздрю с OpenAI идут, аж стрёмно.
Полный демо день тут: https://www.youtube.com/watch?v=XEzRZ35urlk (еще идет)
Прямо сейчас идет мега-дупер-супер-анонс новой гугловской модели Gemini:
— генерация музыки
— генерация видео 1080p
— окно контекста 2 миллиона токенов (несколько тысяч страниц текста в одном промте)
— мультимодальность (кого этим удивишь теперь?)
— новая диффузионка, которая умеет красиво и в текст
— как и у всех, снижение цены в несколько раз
— встроенные ассистенты (они там че, сговорились все?)
— еще насыпали новое поколение своих собственных TPU и процессоров для ML
Прям ноздря в ноздрю с OpenAI идут, аж стрёмно.
Полный демо день тут: https://www.youtube.com/watch?v=XEzRZ35urlk (еще идет)
Google: "наш новый революционный ИИ продукт — это поиск"
1. Overview. Поисковик теперь умеет суммаризировать ответ на вопрос.
2. Агенты. Внутри поиска теперь есть агент, который может разделить сложный вопрос на десятки мелких, сделать поиск и вернуть ответ.
3. Умеет планировать и собирать сложносочиненные ответы.
4. Можно искать с видео (записываешь ролик и задаешь вопрос голосом)
1. Overview. Поисковик теперь умеет суммаризировать ответ на вопрос.
2. Агенты. Внутри поиска теперь есть агент, который может разделить сложный вопрос на десятки мелких, сделать поиск и вернуть ответ.
3. Умеет планировать и собирать сложносочиненные ответы.
4. Можно искать с видео (записываешь ролик и задаешь вопрос голосом)
Автономные агенты от гугла для личной продуктивности и бизнеса.
Держат контекст всей переписки и документов, умеют генерировать ответы, автоматизировать процессы, делать анализ данных на лету.
Держат контекст всей переписки и документов, умеют генерировать ответы, автоматизировать процессы, делать анализ данных на лету.
И к грустным новостям. Перцева признали виновным и осудили на 5 лет.
Как я и писал последние примерно 7 лет: любое государство вынуждено будет бороться с финансовой независимостью граждан, если хочет продолжить существовать. Выиграет много битв, но, рано или поздно, проиграет войну.
Конкретно сейчас государственная система финансовой слежки и контроля одерживает победу за победой: кеш фактически запрещен во всех развитых странах (или лимит ~$10к); приватность финансовых операций под запретом, а написание кода приравнивается чуть ли не к терроризму. Прямо сегодня идут расследования и суды против Ethereum Foundation, Tornado Cash, Samurai Wallet, Uniswap, Robinhood, Shapeshift.
Каждая из этих компаний куда меньше помогла отмыванию денег или финансированию терроризма, чем самый забытый богом региональный банк, но причина не в этом, а в том, что банк можно контролировать и принуждать, а криптоэкономические протоколы нельзя.
Люди пострадают, но биткоин продолжит создавать блок каждые 10 минут.
Как я и писал последние примерно 7 лет: любое государство вынуждено будет бороться с финансовой независимостью граждан, если хочет продолжить существовать. Выиграет много битв, но, рано или поздно, проиграет войну.
Конкретно сейчас государственная система финансовой слежки и контроля одерживает победу за победой: кеш фактически запрещен во всех развитых странах (или лимит ~$10к); приватность финансовых операций под запретом, а написание кода приравнивается чуть ли не к терроризму. Прямо сегодня идут расследования и суды против Ethereum Foundation, Tornado Cash, Samurai Wallet, Uniswap, Robinhood, Shapeshift.
Каждая из этих компаний куда меньше помогла отмыванию денег или финансированию терроризма, чем самый забытый богом региональный банк, но причина не в этом, а в том, что банк можно контролировать и принуждать, а криптоэкономические протоколы нельзя.
Люди пострадают, но биткоин продолжит создавать блок каждые 10 минут.
Программируемая (или кибер-) экономика нужна, чтобы оптимизировать аллокацию ресурсов и создание ценности.
Это достигается через:
1. оптимизацию транзакционных издержек и стоимости доверия через криптографическую проверяемость и дизайн механизмов
2. оптимизацию операционных издержек создания товаров и услуг через автоматизацию
Совсем грубо можно сказать, что задачу (1) решает блокчейн, а задачу (2) решает искусственный интеллект. Давайте упростим, разобьём на составляющие части и изучим.
Часть I. Проблема доверия
Репутация и доверие были первыми в истории человечества рельсами для экономики. До изобретения денег, для бартера использовалось доверие: “я тебе дал кусок мяса, а ты мне отдашь картошку, но не сегодня, потому что она мне не нужна, а завтра”. По мере роста экономики следить за этим стало невозможно и массовыми стали прото-деньги типа ракушек, золото, частичное резервирование и, наконец, фиатные инфляционные деньги.
Фиатная система неплохо скейлится на миллиарды пользователей и сотни триллионов долларов settlement’a, но делает это за счет компромисса доверию. Она полностью централизована и ты должен верить банку, что тот отдаст тебе деньги по требованию и верить государству что оно сохранит стоимость денег. Биткоин решил эту проблему предложив, впервые в истории, цифровую монетарную систему, которая не требует доверия ни одному участнику сети. Биткоин является приложением с одной функцией — быть деньгами.
Эфир и другие проекты расширили идею и сделали универсальную платформу для построения не требующих доверия систем. С переходом на proof of stake, эфир помимо криптографии стал использовать дизайн механизмов для достижения этой цели. Критография дает гарантию проверяемость и доказуемость целостности данных, а дизайн механизмов создает экономические условия для того, чтобы пытаться нарушить правила системы было бы не выгодно. Вкупе эти два подхода делают транзакционные, то есть издержки на участие в рынке, ниже, чем у бюрократического института или корпорации.
Сегодня вы можете создавать или использовать не требующие доверия приложения (например финансовые рынки, игры, социальные сети, автономные агенты), подобные по свойствам биткоину, без необходимости создавать собственную криптоэкономическую сеть для обеспечения доверия. Вы просто платите небольшую комиссию базовой сети за эту титаническую работу, которая равномерно разделена между валидаторами, блокбилдерами, пропоузерами, рестейкинг протоколами и т.д.
Итого: доверие необходимо для функционирования экономики, а децентрализованные крипто сети принести инновацию, позволяющую создавать и покупать/продавать “программируемое” доверие, что снижает транзакционную стоимость многих сервисов и институтов.
Это достигается через:
1. оптимизацию транзакционных издержек и стоимости доверия через криптографическую проверяемость и дизайн механизмов
2. оптимизацию операционных издержек создания товаров и услуг через автоматизацию
Совсем грубо можно сказать, что задачу (1) решает блокчейн, а задачу (2) решает искусственный интеллект. Давайте упростим, разобьём на составляющие части и изучим.
Часть I. Проблема доверия
Репутация и доверие были первыми в истории человечества рельсами для экономики. До изобретения денег, для бартера использовалось доверие: “я тебе дал кусок мяса, а ты мне отдашь картошку, но не сегодня, потому что она мне не нужна, а завтра”. По мере роста экономики следить за этим стало невозможно и массовыми стали прото-деньги типа ракушек, золото, частичное резервирование и, наконец, фиатные инфляционные деньги.
Фиатная система неплохо скейлится на миллиарды пользователей и сотни триллионов долларов settlement’a, но делает это за счет компромисса доверию. Она полностью централизована и ты должен верить банку, что тот отдаст тебе деньги по требованию и верить государству что оно сохранит стоимость денег. Биткоин решил эту проблему предложив, впервые в истории, цифровую монетарную систему, которая не требует доверия ни одному участнику сети. Биткоин является приложением с одной функцией — быть деньгами.
Эфир и другие проекты расширили идею и сделали универсальную платформу для построения не требующих доверия систем. С переходом на proof of stake, эфир помимо криптографии стал использовать дизайн механизмов для достижения этой цели. Критография дает гарантию проверяемость и доказуемость целостности данных, а дизайн механизмов создает экономические условия для того, чтобы пытаться нарушить правила системы было бы не выгодно. Вкупе эти два подхода делают транзакционные, то есть издержки на участие в рынке, ниже, чем у бюрократического института или корпорации.
Сегодня вы можете создавать или использовать не требующие доверия приложения (например финансовые рынки, игры, социальные сети, автономные агенты), подобные по свойствам биткоину, без необходимости создавать собственную криптоэкономическую сеть для обеспечения доверия. Вы просто платите небольшую комиссию базовой сети за эту титаническую работу, которая равномерно разделена между валидаторами, блокбилдерами, пропоузерами, рестейкинг протоколами и т.д.
Итого: доверие необходимо для функционирования экономики, а децентрализованные крипто сети принести инновацию, позволяющую создавать и покупать/продавать “программируемое” доверие, что снижает транзакционную стоимость многих сервисов и институтов.
Бен и Марк утверждают, что в среднесрочной перспективе тренировка и использование ИИ будет использовать ~10% мировой энергии. Для сравнения, Биткоин использует <0.1%, более 50% которой возобновляемая и поэтому майнинг центры часто строят в жопе мира.
Я не к тому, что биткоин и ИИ нужно сравнивать по энергопотреблению, но о том, что спрос на энергию растет сильно быстрее, чем генерация. Я слышу консенсус о том, что без относительно массового возобновления строительства атомных электростанций эта ситуация станет очень острой в ближайшие несколько лет.
Рассказывали про свой стартап «портативные атомные реакторы». Думаю, вот на участке поставить, пусть дымит, а народ будет на нем ИИ-вайфу генерировать.
Я не к тому, что биткоин и ИИ нужно сравнивать по энергопотреблению, но о том, что спрос на энергию растет сильно быстрее, чем генерация. Я слышу консенсус о том, что без относительно массового возобновления строительства атомных электростанций эта ситуация станет очень острой в ближайшие несколько лет.
Рассказывали про свой стартап «портативные атомные реакторы». Думаю, вот на участке поставить, пусть дымит, а народ будет на нем ИИ-вайфу генерировать.
Часть II. Субъективное доверие
Безусловно, не все доверие можно доказать криптографически и исключительно программными методами. Часто доверие требует субъективной оценки: насколько верные данные оракул передал в блокчейн? была ли работа выполнена качественно? можно ли доверять этому проекту или предложению? хороший ли это сотрудник? были ли инвестиции в этот нон-профит эффективны?
Для решений этой задачи используется комбинация криптоэкономических и субъективных инструментов. Простейшим примером такого будет персональная репутация и крипто+экономические механизмы гарантии достоверности. Разберём пример.
Репутация. Цифровая и децентрализованная репутация это всегда три элемента:
1. Уникальный идентификатор пользователя или организации
2. Отдельные credentials, штампики, факты, куски информации о субъекте, которые могут (и чаще должны) быть приватны и не видны никому, кроме владельца идентификатора. Это может быть финансовая история, уровень образования, ценности, количество часов игры в доту, экзиты на сотни миллионов, навыки, отношения с группой людей, любимый цвет или адрес прописки.
3. Скоринг репутации в рамках отдельно взятого домена. Для этого нужно взять credentials и посчитать некоторый score, который может быть в виде числа (я фанат пиццы на 10/10) или в виде длинного эссе о жизни и любви отдельного персонажа. Часто скоринг делают через ML алгоритмы, а иногда даже через LLM, которые могут обработать мегабайт текста и выдать саммари в абзац.
Криптоэкономика. Инструменты гарантии и автоматизации цифровых репутационных систем. Главная их задача это сделать так, чтобы система была максимально прозрачной и бесперебойной без необходимости центрального арбитра: как доказать честность без справки из каких-нибудь органов? как доказать финансовую состоятельность без доверия одному банку? как доказать, что ты не верблюд без паспорта государства Х? Это необходимо для удешевления транзакционных издержек (см. пункт I данного эссе), для борьбы с излишней субъективностью, коррупцией и излишней властью одного провайдера репутации.
Очевидным образом, криптоэкон задачки решаются через:
1. Криптографию. Для гарантии приватности, pseudonymity, integrity authenticity данных, в том числе через zero-knowledge криптографию (я могу доказать ЛЮБОЙ факт не разглашая ничего о факте.
2. Экономику. Тут есть сотни дизайнов, но самый распространенный — это work token со слешенгом: люди делают депозит и проверяют определенную информацию, а если их проверка неверна или они вступают в сговор, то автоматически, через смарт-контракт, теряют весь или часть депозита. Подробнее можно почитать в дизайне PoS эфира или токена EIGEN.
Это примитивные кубики. Реальные системы для гавернанса и управления сообществ с миллионами участников, организаций с миллиардной капитализацией и институтами основополагающих функций общества будут, конечно, куда сложнее. Но об этом дальше.
Программируемая (кибер-) экономика: Часть I, Часть II
Безусловно, не все доверие можно доказать криптографически и исключительно программными методами. Часто доверие требует субъективной оценки: насколько верные данные оракул передал в блокчейн? была ли работа выполнена качественно? можно ли доверять этому проекту или предложению? хороший ли это сотрудник? были ли инвестиции в этот нон-профит эффективны?
Для решений этой задачи используется комбинация криптоэкономических и субъективных инструментов. Простейшим примером такого будет персональная репутация и крипто+экономические механизмы гарантии достоверности. Разберём пример.
Репутация. Цифровая и децентрализованная репутация это всегда три элемента:
1. Уникальный идентификатор пользователя или организации
2. Отдельные credentials, штампики, факты, куски информации о субъекте, которые могут (и чаще должны) быть приватны и не видны никому, кроме владельца идентификатора. Это может быть финансовая история, уровень образования, ценности, количество часов игры в доту, экзиты на сотни миллионов, навыки, отношения с группой людей, любимый цвет или адрес прописки.
3. Скоринг репутации в рамках отдельно взятого домена. Для этого нужно взять credentials и посчитать некоторый score, который может быть в виде числа (я фанат пиццы на 10/10) или в виде длинного эссе о жизни и любви отдельного персонажа. Часто скоринг делают через ML алгоритмы, а иногда даже через LLM, которые могут обработать мегабайт текста и выдать саммари в абзац.
Криптоэкономика. Инструменты гарантии и автоматизации цифровых репутационных систем. Главная их задача это сделать так, чтобы система была максимально прозрачной и бесперебойной без необходимости центрального арбитра: как доказать честность без справки из каких-нибудь органов? как доказать финансовую состоятельность без доверия одному банку? как доказать, что ты не верблюд без паспорта государства Х? Это необходимо для удешевления транзакционных издержек (см. пункт I данного эссе), для борьбы с излишней субъективностью, коррупцией и излишней властью одного провайдера репутации.
Очевидным образом, криптоэкон задачки решаются через:
1. Криптографию. Для гарантии приватности, pseudonymity, integrity authenticity данных, в том числе через zero-knowledge криптографию (я могу доказать ЛЮБОЙ факт не разглашая ничего о факте.
2. Экономику. Тут есть сотни дизайнов, но самый распространенный — это work token со слешенгом: люди делают депозит и проверяют определенную информацию, а если их проверка неверна или они вступают в сговор, то автоматически, через смарт-контракт, теряют весь или часть депозита. Подробнее можно почитать в дизайне PoS эфира или токена EIGEN.
Это примитивные кубики. Реальные системы для гавернанса и управления сообществ с миллионами участников, организаций с миллиардной капитализацией и институтами основополагающих функций общества будут, конечно, куда сложнее. Но об этом дальше.
Программируемая (кибер-) экономика: Часть I, Часть II