Big Data AI
16.8K subscribers
832 photos
98 videos
19 files
833 links
@haarrp - админ

Вопросы с собеседований по Machine Learning, Data Science, Deep Learning и Нейроннным сетям

@data_analysis_ml - анализ данных

@ai_machinelearning_big_data

@itchannels_telegram - важное для программиста

РКН: clck.ru/3Fmqxe
Download Telegram
🔥 Qwen3-30B-A3B-Instruct — всего 3B активных параметров, но уже приближается к качеству гораздо более крупных моделей.

Можно легко развернуть локально или протестировать онлайн.

Попробовать: chat.qwen.ai/?model=Qwen3-30B-A3B-2507
👍32🔥1
Forwarded from Machinelearning
🖥 GPT-5 - это скорее оптимизация затрат, чем технологический скачок

Вчера вышла любопытная статья на The Register раскрывает ключевую стратегию, лежащую в создании GPT-5: это не столько развитие новых возможностей, сколько способ экономии ресурсов.

Что нового?
🟠 Композиция из моделей и роутер — вместо одной модели GPT-5 — система минимум из двух моделей: лёгкой и тяжёлой, плюс роутер, который выбирает, какую использовать в зависимости от запроса. Это снижает нагрузку и экономит вычисления.
🟠 Автоматическое отключение рассуждений — reasoning включается только при необходимости. Бесплатные пользователи не могут управлять этим процессом — меньше вычислений, меньше токенов, ниже затраты.
🟠 Отказ от старых моделей — временное отключение GPT-4o. Позже модель вернули для платных пользователей, но общее сокращение числа моделей — часть экономии.
🟠 Ограниченный контекст — 8 000 токенов бесплатно и до 128 000 в Plus/Pro.

✔️ Почему эффективность стала ключевым фактором

ChatGPT — это 700 млн активных пользователей в неделю, но платных всего ~3%.

Масштаб колоссальный, но вместе с ним — и проблема: огромные расходы на вычисления.

🟢 Главный козырь OpenAI — дистрибуция. Для большинства людей за пределами AI-сферы ChatGPT = искусственный интеллект, так же как Google = поиск. Но такое лидерство дорого обходится.

🟢 При этом OpenAI нужно постоянно искать новые деньги, чтобы поддерживать и обучение, и инференс. Да, партнёрство с Microsoft помогает, но ситуация сложнее, чем у конкурентов вроде Google — у них стабильная прибыль, собственные дата-центры и TPUs.

🟢 На этом фоне логично, что в GPT-5 сделали сильный упор на эффективность — чтобы снизить затраты и сохранить конкурентное преимущество.

📌 Подробности

@ai_machinelearning_big_data

#news #ai #ml #opanai #chatgpt
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
1👍1